
Théo Saulus Page 1 of 56 TU Berlin, summer 2022 

Quantum Computing 
 

The following notes have been written by Théo Saulus, based on Prof. Dr. Jean-Pierre Seifert lectures 

and slides. They are meant as a support for the students following the course, but should not be considered 

as a replacement for the professor’s lectures and materials. This document has not been reviewed by the 

professor, and should therefore be used carefully. 
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I.I.I.I. KickKickKickKick----off sessionoff sessionoff sessionoff session    

I.A Organisation 

Lecture (Summer) 

• 2 SWS Lecture 

• Thursday 14:15-15:45 

• PC203 

Exercise (with practical programming) (Summer) 

• 2 SWS Exercise/Tutorial 

• Day: Friday 10:15-11:45 

• Room: HL001/zoom??? 

Lecturer: Jean-Pierre Seifert 

• OKce: TEL 16 

• E-Mail: Jean-Pierre.Seifert@external.telekom.de 

• Consultation: pls. send email to Secretary 

Tutor: Zarin Shakibaei/Niklas Pirnay 

• OKce: TEL 16 

• E-Mail: zarin.shakibaei@tu-berlin.de; n.pirnay@tu-berlin.de 

• Consultation: pls. send email to them 

Secretary: Claudia Petzsch 

• OKce: TEL16 

• E-Mail: Claudia.Petzsch@external.telekom.de 

 

I.B Some useful on-line material 

• Preskill lecture notes from: http://www.theory.caltech.edu/people/preskill/ph229 

• A self-contained nice primer from Dorit Aharonov: Quantum Computation - A Review 

• Feynmann lectures are really nice: http://www.feynmanlectures.info/  

• Best QC book is from my point of view: http://twoqubits.wikidot.com/start  

• The QC bible Quantum Computation and Quantum Information by "Mike and Ike“ is: 

https://en.wikipedia.org/wiki/Quantum_Computation_and_Quantum_Information  
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II.II.II.II. IntroductioIntroductioIntroductioIntroduction and Motivationn and Motivationn and Motivationn and Motivation    

In this Qrst lecture we mainly deal why we should be interested in quantum information processing and 

also with very basic experiments, principles and formalism of quantum mechanics. We deal also, in some 

details, with classical reversible computations, as a special case of quantum computation. 

In quantum computing we witness an interaction between the two most important areas of science and 

technology of the 20th century, between quantum physics and computer science. This may have important 

consequences for 21st century. 

II.A Introduction to quantum physics 

II.A.1 A view of history 

19th century was mainly inRuenced by the Qrst industrial revolution that had its basis in the classical 

mechanics discovered, formalized and developed in the 18th century.  

At the end of 19th century it was believed by most that the laws of Newton and Maxwell were correct and 

complete laws of physics. At the beginning of 20th century it got clear that these laws are not suKcient to 

explain all observed physical phenomena. As a result, a new mathematical framework for physics called 

quantum mechanics was formulated and new theories of physics, called quantum physics were developed. 

20th century was mainly inRuenced by the second industrial revolution that had its basis in electrodynamics 

discovered, formalized and developed in the 19th century. 

21st century can be expected to be mainly developed by quantum mechanics and computer science 

discovered, formalized and developed in the 20th century. 

II.A.2 Introduction to quantum physics 

Quantum physics is an elegant and conceptually simple theory that describes with astonishing precision a 

large spectrum of the phenomena of Nature. The predictions made on the base of quantum physics have been 

experimentally veriQed to 14 orders of precision. No conRict between predictions of theory and experiments 

is known. Without quantum physics we cannot explain properties of super-Ruids, functioning of laser, the 

substance of chemistry, the structure and function of DNA, the existence and behaviour of solid bodies, colour 

of stars,… 

Quantum physics deals with fundamental entities of physics, particles like: 

• protons, electrons and neutrons (from which matter is built); 

• photons (which carry electromagnetic radiation) - they are the only particles which we can directly 

observe; 

• various “elementary particles” which mediate other interactions of physics. 

We call them particles although some of their properties are totally unlike the properties of what we call 

particles in our ordinary world. Indeed, it is not clear in what sense these “particles” can be said to have 

properties at all. 

Quantum mechanics is not physics in the usual sense – it is not about matter, or energy or waves, or particles 

– it is about information, probabilities, probability amplitudes and observables, and how they relate to 

each other. Quantum mechanics is what you would inevitably come up with if you would started from 

probability theory, and then said, let’s try to generalize it so that the numbers we used to call “probabilities” 

can be negative numbers. 
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As such, the theory could have been invented by mathematicians in the 19th century without any input from 

experiments. It was not, but it could have been (Aaronson, 1997) 

II.A.3 What quantum physics tells us? 

Quantum physics tells us what happens, but it does not tell us why it happens, and does not tell us either 

how it happens, nor how much it costs. 

“I am going to tell you what Nature behaves like. However, do not keep saying to yourself, if you can possibly 

avoid it, “But how can it be like that?”, because you will get “down the drain” into a blind alley from which 

nobody has yet escaped. Nobody knows how it can be like that.” Richard Feynman (1965): The character of 

physical law 

II.A.4 Mathematics behind quantum mechanics 

Quantum physics phenomena are diKcult to understand since at attempts to understand quantum physics 

most of our everyday experiences are not applicable. Quantum mechanics is a theory in mathematical sense: 

it is governed by a set of axioms. 

Concerning mathematics behind quantum mechanics, one should actually do not try to understand what this 

means, one should try to learn to work with it! Nobody saw superposition of quantum states - one can 

“see” only basis states. 

It is well known that it is very hard to understand quantum physics. However, it is less known that 

understanding of quantum physics is child’s play comparing with understanding of child’s play. 

II.B Introduction to quantum computing 

II.B.1 Why is Quantum Information Processing and Computing so 

important? 

There are six main reasons why QIPC is increasingly considered as of (very) large importance: 

1. QIPC is believed to lead to new Quantum Information Processing Technologies that could 

have deep and broad impacts. 

2. Several areas of science and technology are approaching the point at which they badly need expertise 

with isolation, manipulating and transmission of particles. 

3. It is increasingly believed that new, quantum information processing based, and understanding 

of (complex) quantum phenomena and systems can be developed. 

4. Quantum cryptography seems to o-er new level of security and is already feasible. 

5. QIPC has been shown to be more e.cient in interesting & important cases. 

6. TCS and Information Theory got a new dimension and fresh impulses. 

II.B.2 Why von Neumann did (could) not discover quantum computing? 

No computational complexity theory was known (and needed). Information theory was not yet well developed. 

Progress in physics and technology was far away from what would be required to make even rudimentary 

implementations of a QC. The concept of randomized algorithms was not known. No public key cryptography 

was known (and required). 
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II.B.3 Development of basic views on the role of information in physics: 

Information is information, nor matter, nor energy - Norbert Wiener 

Information is physical - Ralf Landauer. Should therefore information theory and foundations of computing 

(complexity theory and computability theory) be a part of physics? 

Physics is informational. Should (Hilbert space) quantum mechanics be a part of Computer Science? 

Wheeler’s view: “I think of my lifetime in physics as divided into three periods. In the Qrst period, I was 

convinced that everything is particle. I call my second period: everything is Qelds. Now I have a new vision, 

namely that everything is information” 

Quantum physics is an extremely elaborated theory, full of paradoxes and mysteries. It takes any physicist 

years to develop a feeling for quantum mechanics. Some (theoretical) computer scientists/mathematicians, 

with almost no background in quantum physics, have been able to make crucial contributions to the theory 

of quantum information processing. 

II.B.4 Moore’s law 

There are no reasons why the increase of performance of processors should not follow Moore’s law in the 

near future. A long term increase of performance of processors according to Moore’s law seems to be possible 

only if, at the performance of computational processes, we get more and more to the atomic level. An 

extrapolation of the curve depicting the number of electrons needed to store a bit of information shows that 

around 2020 we will require only very few electrons to store one bit. 

It is nowadays accepted that information processing technology has been developed for the last 50 years 

according the so-called Moore law. This law has now three forms: 

• Economic form: Computer power doubles, at constant cost, every two years or so. 

• Physical form: The number of atoms needed to represent one bit of information should halves every 

two years or so. 

• Quantum form: For certain applications, quantum computers need to increase in the size only by 

one qubit every two years or so, in order to keep pace with the classical computers performance 

increase 

On the base of quantum mechanics one can determine that the “ultimate laptop” of mass 1 kg and size 1 liter 

cannot perform more than �. � × 
��� bit operations per second. 

Calculations (S. Lloyd, 1999) are based only on the amount of energy needed to switch from one state to 

another distinguishable state. It seems to be harder to determine the number of bits of such an “ultimate 

laptop”. However, the bound 3.8 × 1016 has been determined for a computer compressed to form a black 

hole. It is quite clear that Moore’s law cannot hold longer than for another 200 years. 

II.B.5 Pre-history of computation 

1970 Landauer demonstrated importance of reversibility for minimal energy computation; 

1973 Bennett showed the existence of universal reversible Turing machines; 1981 To-oli-Fredkin designed a 
universal reversible gate for Boolean logic; 

1982 Benio- showed that quantum processes are at least as powerful as Turing machines; 

1982 Feynman demonstrated that quantum physics cannot be simulated e-ectively on classical computers; 
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1984 Quantum cryptographic protocol BB84 was published, by Bennett and Brassard, for absolutely secure 
generation of shared secret random classical keys. 

1985 Deutsch showed the existence of a universal quantum Turing machine. 

1989 First cryptographic experiment for transmission of photons, for distance 32.5cm was performed by 
Bennett, Brassard and Smolin 

1993 Bernstein-Vazirani-Yao showed the existence of an eKcient universal quantum Turing machine; 

1993 Quantum teleportation was discovered, by Bennett et al.  

1994 Shor discovered a polynomial time quantum algorithm for factorization; Cryptographic QKD 
experiments were performed for the distance of 10km (using Qbers). 

1994 Quantum cryptography went through an experimental stage; 

1995 DiVincenzo designed a universal gate with two inputs and outputs; 

1995 Cirac and Zoller demonstrated a chance to build quantum computers using existing technologies. 

1995 Shor showed the existence of quantum error-correcting codes. 

1996 The existence of quantum fault-tolerant computation was shown by Shor 

II.B.6 Reversibility  

Quantum processes are reversible. An operation is reversible if its outputs uniquely determine its inputs: 

• (�, �) → � + � is a non-reversible operation 

• (�, �) → (� + �, � − �) is a reversible operation 

• If � → �(�) is a mapping (not necessarily reversible), then (�, 0) → (�, �(�)) is surely reversible  

Three reversible classical gates: NOT, XOR (CNOT) and To-oli (CCNOT) 
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De�nition: A set � of gates is universal for classical computation if for any positive integers �, � and 

function � ∶  {0, 1}#  → {0, 1}$, a circuit can be designed for computing � using only gates from �. 

The sets {NAND} and {To-oli, FREDKIN} form a universal set of gates. 

The set consisting of just the To-oli gate is also universal for classical computing – provided we add the 

ability to add ancillary bits to the circuit that can be initiated to either 0 or 1 as required 

II.B.7 Garbage removal 

In order to produce reversible computation, one needs to produce garbage (information). Its removal is 

possible and important. Bennett (1973) has shown that if a function � is computable in a one-tape Turing 

machine in time %(�), then there is a 3-tape reversible Turing machine computing, with constant time 

overhead, the mapping � → (�, &(�), �(�)). 
Bennett has also shown that there is an elegant reversible way how to remove garbage &(�): 

• Basic computation of �: � → (�, &(�), �(�)) 
• Fanout: (�, &(�), �(�)) → (�, &(�), �(�), �(�)) 
• Uncomputing of � : (�, &(�), �(�), �(�)) → (�, �(�)) 

Observe that CNOT gate with 0 as the initial value of the target bit is a copy gate (we will see later if it is 

an actual copy, or not…). Indeed,  

()*+(,, 0) = (,,,) 
A circuit version of the garbage removal has then the form: 

 

(. is made of reversible gates, therefore (.−1 exists. We reset the work space and output space to 0, to save 

memory. 
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Billiard ball reversible computer (Fredkin and Tofolli): 
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III.III.III.III. Mathematics of quantum mechanicsMathematics of quantum mechanicsMathematics of quantum mechanicsMathematics of quantum mechanics    

III.A Experiments 

III.A.1 Classical experiments 

 

A gun firing bullets with only one hole open: if we measure where the bullet arrive, they will arrive around 

the open hole. The sum of the two curves 01(,) and 02(,) is 012(,). The same result is obtained if we open 

the two holes at the same time. 

 

With waves, the result is different: when only one hole is open, we obtain the intensities 21(,) and 22(,). 
However, if both are open, we obtain 212(,), where we can see interferences, it is not the sum of the intensities. 

III.A.2 Quantum experiments 

 

Same experience as the bullets one, but with electrons. This time, we obtain a interferences like pattern. 
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Now, we have a light detector to know if electrons took one or the other hole. With both holes open, the 

probability curve does no longer show the interferences. As soon as we do a measurement, we completely 

change the quantum behaviour (electrons are quantum particles).  

For more details, read the Qrst pages of Feynman lectures. 

Contrary to our intuition, at some places one observes fewer electrons when both slits are open, than in the 

case only one slit is open. 

• Electrons – particles, seem to behave as waves. 

• Each electron seems to behave as going through both holes at once. 

• Results of the experiment do not depend on frequency with which electrons are shot. 

• Quantum physics has no explanation where a particular electron reaches the detector wall. All 

quantum physics can o-er are statements on the probability that an electron reaches a certain position 

on the detector wall. 

III.A.3 Bohr’s wave-particle duality principles 

Things we consider as waves correspond actually to particles and things we consider as particles have 

waves associated with them. The wave is associated with the position of a particle – the particle is more 

likely to be found in places where its wave is big. 

The distance between the peaks of the wave is related to the particle’s speed; the smaller the distance, the 

faster particle moves.  

The wave’s frequency is proportional to the particle’s energy. (In fact, the particle’s energy is equal exactly 

to its frequency times Planck’s constant.) 

III.B Quantum mechanics 

III.B.1 Introduction to quantum mechanics 

Quantum mechanics is a theory that describes atomic and subatomic particles and their interactions. 

• Quantum mechanics was born around 1925. 

• A physical system consisting of one or more quantum particles is called a quantum system. 

• To completely describe a quantum particle an in=nite-dimensional Hilbert space is required. 

• For quantum computational purposes it is su.cient to have a partial description of particle(s) given 

in a =nite-dimensional Hilbert (inner-product) space. 
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• To each isolated quantum system, we associate an inner-product vector space whose elements are 

norm-1 states and are called (pure) states (object of the Hilbert space). 

III.B.2 Bra-ket notation 

P. Dirac introduced a very handy notation, the so called bra-ket notation, to deal with amplitudes, quantum 

states and linear mapping � ∶ 3 → ℂ, for some space 3. 

If 5, 6 ∈ 3, then: 

• ⟨6|5⟩ is a number: the scalar product between 6 and 5 (or the amplitude of going from 5 to 6) 

• |5⟩ is a ket-vector: a column vector, an equivalent to 5 

• ⟨6| is a bra-vector: a row vector, the conjugate transpose of |6⟩, i.e., linear functional on 3 such 

that ⟨6| (|5⟩) = ⟨6|5⟩ 
III.B.3 A quantum system is a Hilbert space 

The Hilbert space ℋ# is an �-dimensional complex vector space with a scalar product 

⟨6|5⟩ = ∑6=∗5=
#

==1
 

Where |6⟩ = (61…6#
) and |5⟩ = (51…5#

) 

The �-norm for respective vectors is ‖6‖ ≔ √|⟨6|6⟩|, and the metric is EFG%(6, 5) = ‖6 − 5‖ 
This allows us to introduce on ℋ a topology and concepts such as continuity. Elements (vectors) of a Hilbert 

space ℋ are usually called pure states of ℋ. 

Example: 

If 6 = (61,… , 6#) and 5 = (51,… ,5#), then: 

• |6⟩ = (61…6#
) is a ket-vector 

• ⟨5| = (51∗ ,… , 5#∗ ) is a bra-vector 

• The inner product (scalar product) is ⟨6|5⟩ = ∑ 6=∗5=#==1   

• The outer product is |6⟩⟨5| = (6151∗ ⋯ 615#∗⋮ ⋱ ⋮6#51∗ ⋯ 6#5#∗
) 

The meaning of the outer product is that of the mapping that maps any stat |L⟩ into the state  

|6⟩⟨5|  (|L⟩) = |6⟩ (⟨5|L⟩) = ⟨5|L⟩  |6⟩ 
It is often said that physical counterparts of vectors of �-dimensional Hilbert spaces are �-level quantum 

systems. 

A nice book about the current topics: Quantum theory: concepts and methods, Asher Peres 
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III.B.4 Orthogonality of pure states 

Two quantum states |5⟩ and |6⟩ are called orthogonal i- their scalar product is zero, that is: ⟨6|5⟩ = 0 

Two pure quantum states are physically perfectly distinguishable only if they are orthogonal 

In every Hilbert space, there are so-called orthogonal bases, which means that all states of it are mutually 

orthogonal 

III.B.5 The three quantum principles 

P1: To each transfer from a quantum state 6 to a state 5 a complex number ⟨6|5⟩ is associated, which is 

called the probability amplitude of the transfer, such that |⟨6|5⟩|2 is the probability of the transfer. We 

take the absolute value before the square, to make sure the Qnal value is actually positive and not complex. 

P2: If a transfer from a quantum state 6 to a quantum state 5 can be decomposed into two subsequent 

transfers 5 ← 6′ ← 6, then the resulting of the transfer is the product of amplitudes of sub-transfers: 

⟨6|5⟩ = ⟨6|6′⟩⟨6′|5⟩ 
P3: If the transfer from 6 to 5 has two independent alternatives, with amplitudes O and P, i.e., 

 

Then the resulting amplitude is the sum O + P of amplitudes of two sub-transfers. This is vastly di-erent 

from classical operations, because the amplitudes can here be complex, thus attenuate each other, whereas 

classical probabilities (like in probabilistic Turing machines), can only add up. 

  



Prof. Dr. Jean-Pierre Seifert Quantum Computing
 

Théo Saulus Page 16 of 56 TU Berlin, summer 2022 

IV.IV.IV.IV. Beginnings of quantum computationBeginnings of quantum computationBeginnings of quantum computationBeginnings of quantum computation    

IV.A Qubits 

A single qubit – a two-level quantum system – is a quantum state in ℋ2  
|6⟩ = O|0⟩ + P|1⟩ 

with O, P ∈ ℂ are such that |O|2 + |P|2 = 1  

and { │0⟩  , |1⟩  } some (standard) basis of ℋ2, e.g. |0⟩ = (1,0) and |1⟩ = (0,1). 
What does this constraint on the scalars mean for the length of the vector of 6? The norm of 6 is also 1. It 

exists quantum systems that have a norm di-erent than 1, but we will not work on them, and mostly focus 

on pure states, which are normalized. 

Example: representation of qubits by: 

a) Electron in a hydrogen atom 

 

b) A spin-1 

 

 



Prof. Dr. Jean-Pierre Seifert Quantum Computing
 

Théo Saulus Page 17 of 56 TU Berlin, summer 2022 

 

Bloch sphere: nice 3D representation, which allows to see that ‖5‖ = 1, because |5⟩ stays on the unity sphere. 

See animation https://javafxpert.github.io/grok-bloch/.  

IV.A.1 Classical vs. Quantum computing 

The essence of the di-erence between classical computers and quantum computers is in the way information 

is stored and processed. 

In classical computers, information is represented on macroscopic level by bits, which can take one of the 

two values 0 or 1. [experts could say it is an approximation, but we do not care] 

In quantum computers, information is represented on microscopic level using qubits, which can take for |0⟩, |1⟩ ∈ ℋ2 = ℂ2 any value from uncountable many values O|0⟩ + P|1⟩, with O, P ∈ ℂ such that |O|2 + |P|2 = 1. 

IV.A.2 Physical representations of a qubit 
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How is Moore’s law forcing us to consider the quantum world when going under 4 ��? Because quantum 

e-ects… 

Josephson junction has led to most of the currently large quantum computers (IBM, Google, …), because 

it is the best understood. 

Photon encoding has a major drawback compared to Josephson junction, silicon systems, and electrons, 

because it takes way too much space. A quantum computer makes only sense if it is scalable and not limited 

to a few qubits. 

IV.B Mathematical framework 

IV.B.1 (Two-dimensional) Hilbert space �S 
Standard (computational) basis: |0⟩ = (10) , |1⟩ = (01) 

Dual basis (thanks to our friend Jacques Hadamard):  

|0′⟩ =
⎝⎜
⎜⎜⎜⎛

1√21√2⎠⎟
⎟⎟⎟⎞ ≔ |+⟩, |1′⟩ =

⎝⎜
⎜⎜⎜⎛

1√2
− 1√2⎠⎟

⎟⎟⎟⎞ ≔ |−⟩ 

The Hadamard matrix (Hadamard operator in the standard basis) transforms the standard basis into the 

dual basis, and vice-versa: 

3 = 1√2(1 11 −1) 
With properties (it is reversible!): 

 

IV.B.2 Quantum evolution 

Evolution in quantum system is ruled by Schrödinger equation, and is a computation in a Hilbert space. 

Linear time-dependent Schrödinger equation: 

Fℏ _5(%)_% = 3(%)5(%)  
3(%) is a Hermitian operator representing the total energy of the system, from which it follows that 5(%) =`−1ℏb(c) and therefore that a discretized evolution (computation) step of a quantum system is performed by 

a multiplication of the state vector by a unitary operator, i.e., a step of evolution is a multiplication by a 

unitary matrix d with a vector |5⟩, i.e., d|5⟩ 
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IV.B.3 Hermitian operator 

In mathematics, a self-adjoint operator on an inQnite-dimensional complex vector space e with inner 

product ⟨ | ⟩ (respectively Hermitian operator on a Qnite-dimensional space) is a linear map d from e to 

itself that is its own adjoint, i.e., 

⟨d6|5⟩ = ⟨6|d5⟩ 
for all vectors 6 and 5. 

If e is Qnite-dimensional with a given orthonormal basis, this is equivalent to the conclusion that the matrix d is a Hermitian matrix, i.e., equal to its conjugate transpose d∗ 
IV.B.4 Unitary Operator/Matrix 

A matrix d is unitary if for d and its adjoint matrix d† (with d=g† = (dg=)∗) it holds: 

d ⋅ d† = d† ⋅ d = 2 
Once again this operation is reversible 

A unitary mapping k  is a linear mapping that preserves the inner product, that is ⟨k6|k5⟩ = ⟨6|5⟩ 
IV.B.5 Hamiltonians 

The Schrödinger equation tells us how a quantum system evolves, subject to the Hamiltonian. However, in 

order to do quantum mechanics, one has to know how to pick up the Hamiltonian. The three former principles 

that tell us how to do so, i.e. the principles of quantum mechanics. Each quantum system is actually uniquely 

determined by a Hamiltonian. 

We do not need to be bothered here with how to choose the Hamiltonian, only how to treat the system. 

IV.B.6 Examples of unitary matrices 

Examples of unitary matrices of degree 2: 

• Pauli matrices: lm = (0 11 0) , ln = (0 −FF 0 ) , lo = (1 00 −1) 

• Hadamard matrix: ( 1√2 1√21√2 − 1√2
) 

We can compute the square root of matrix, for example: √lm = 12 (1 − F 1 + F1 + F 1 − F) 

Three other important unitary operations on qubits are rotation (by p), phase shift (with respect to O), and 

scale (with respect to q): 

r(p) =
⎝⎜
⎜⎜⎛ cos p2 sin p2

− sin p2 cos p2⎠⎟
⎟⎟⎞ , 0x(O) = (`=z2 00 `−=z2) , x|�}(q) = (`=~ 00 `=~) 

Theorem: Each unitary matrix U of degree 2 can be written as follows: 

k = `=� (`=z 00 `−=z)( cos p F sin pF sin p cos p )(`=� 00 `−=�) 
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IV.B.7 Universal set of quantum gates 

The main task of quantum computation is to express the solution of a given problem �  as a unitary 

matrix ��  and then to construct a circuit (��  with elementary quantum gates from universal sets of 

quantum gates to realize k . That is: 

0 → k� → (��  

A simple universal set of quantum gates consists of gates: 

()*+ =
⎝⎜
⎜⎛

1 00 1 0
0 0 11 0⎠⎟

⎟⎞, 3 = 1√2(1 11 −1) , lo
14 = (1 00 `=�4) 

Note: the lo
14 gate is diKcult to build in practice 

IV.B.8 Solving Schrödinger’s equation 

See slide 36 not covered 

IV.B.9 Computation, and example of applications of gates 

A quantum computation step multiplies the vector of amplitudes by a matrix, leading to a new state vector. 

Here for example, the Hadamard gate is applied: 

3|0⟩ = 1√2(1 11 −1)(10) =
⎝⎜
⎜⎜⎜⎛

1√21√2⎠⎟
⎟⎟⎟⎞ = |+⟩ 

 

Note also that: 

3|+⟩ = 1√2(1 11 −1)
⎝⎜
⎜⎜⎜⎛

1√21√2⎠⎟
⎟⎟⎟⎞ = (10) = |0⟩ 

Application of the CNOT gate: 

()*+ =
⎝⎜
⎜⎛

1 00 1 0
0 0 11 0⎠⎟

⎟⎞  applied to 
⎝⎜
⎜⎛

1000⎠⎟
⎟⎞ = |00⟩ ∶  

⎝⎜
⎜⎛

1 00 1 0
0 0 11 0⎠⎟

⎟⎞ ⋅
⎝⎜
⎜⎛

1000⎠⎟
⎟⎞ =

⎝⎜
⎜⎛

1000⎠⎟
⎟⎞ 
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Another example: 

()*+ applied to
⎝⎜
⎜⎛

0010⎠⎟
⎟⎞ = |10⟩ ∶  

⎝⎜
⎜⎛

1 00 1 0
0 0 11 0⎠⎟

⎟⎞ ⋅
⎝⎜
⎜⎛

0010⎠⎟
⎟⎞ =

⎝⎜
⎜⎛

0001⎠⎟
⎟⎞ = |01⟩ 

IV.C Measurement 

IV.C.1 Stern-Gerlach measurement experiment 

Let us consider, in a idealized form, one of the other famous experiments of quantum physics, which 

demonstrates that some quantum phenomena are not determined except when they are measured.  

It was used to demonstrate that electrons and atoms have intrinsically quantum properties, and how 

measurement in quantum mechanics a-ects the system being measured. 

 

SpeciQcally, the experiment demonstrates the property of spin and its quantized nature.  

Particles (silver atom in the original experiment) are sent through an inhomogeneous magnetic Qeld to hit a 

screen. Spin causes the particles to have a magnetic moment, and the magnetic Qeld deRects the particles 

from their straight path. The screen shows discrete points rather than a continuous distribution, owing to 

the quantum nature of spin. 

The quantum theory explanation is the following one: Passing an atom through a magnetic Qeld amounts to 

a measurement of its magnetic alignment, and until you make such a measurement there is no sense in 

sating what the atom’s magnetic alignment might be. Only when you make a measurement you obtain one 

of only two possible outcomes, with equal probability, and those two possibilities are deQned by the 

direction of the magnetic Qeld that you use to make the measurement.  

IV.C.2 Tensor product 

A tensor product of vectors is: 

(61,… , 6#) ⊗ (51,… , 5$) = (6151 ⋯ 615$⋮ ⋱ ⋮6#51 ⋯ 6#5$
) ∈ ℂ#×$ 

A tensor product of matrices is: 

d ⊗ � = (�11� ⋯ �1#�⋮ ⋱ ⋮�#1� ⋯ �##�) 
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A tensor product of Hilbert spaces is: ℋ ⊗ ℋ′, which is the complex vector space spanned by tensor 

products of vectors from ℋ and ℋ′, that corresponds to the quantum system composed of the quantum 

systems corresponding to Hilbert spaces ℋ and ℋ′. 
IV.C.3 Entanglement 

A very important di-erence between classical and quantum systems: 

• A state of a composite classical system can always be composed from the states of its subsystems 

• A state of a composite quantum system cannot always be composed from the states of its subsystems 

IV.C.4 Quantum registers 

Any ordered sequence of � quantum qubit systems create a so-called quantum �-qubit register. The 

Hilbert space corresponding to an �-qubit register is the �-fold tensor product of 2-dimensional Hilbert spaces: 

ℋ2� = ⨂ℋ2
#

==1  

Thus, � qubits allow for 2# states. 

Since the vectors |0⟩, |1⟩ form a basis of ℋ2, one of the basis of ℋ2�, the so-called computational basis, 

consists of all possible �-fold tensor products where �= ∈ {0,1} for all F: 
|�1⟩ ⊗ …⊗ |�#⟩ ≔ |�1, … , �#⟩ 

Example: a 2-qubit register has as computational basis vectors  

|00⟩ =
⎝⎜
⎜⎛

1000⎠⎟
⎟⎞, |01⟩ =

⎝⎜
⎜⎛

0100⎠⎟
⎟⎞, |10⟩ =

⎝⎜
⎜⎛

0010⎠⎟
⎟⎞, |11⟩ =

⎝⎜
⎜⎛

0001⎠⎟
⎟⎞ 

We do not want to use these 2# unity vectors, we will rather make use of the tensor products! Quantum 

computers work on a 2# dimensional space, it’s huge. 

IV.C.5 Quantum states and von Neuman measurements 

In case an orthonormal basis {P=}==1#  is chosen in ℋ#, any state |6⟩ ∈ ℋ# can be expressed in the form 

|6⟩ = ∑�=|P=⟩#
==1

,  with ∑|�=|2#
==1

= 1 

Where �= = ⟨P=|6⟩ are called probability amplitudes, which can be complex numbers, and their squares |�=|2 = ⟨6|P=⟩⟨P=|6⟩ provide probabilities that if the state |6⟩ is measured with respect to the basis {P=}=, 
then the state |6⟩ collapses into the state |P=⟩ with probability |�=|2. 
The classical “outcome” of a (von Neuman) measurement of the state |6⟩ with respect to the basis {P=}= is 
the index F of that state |P=⟩ into which the state |6⟩ collapses. 

IV.C.6 Physical view of quantum measurement 

In case of an orthonormal basis {P=}= is chosen in ℋ#, it is said that an observable was chosen. In such a 

case, a measurement, or an observation, of a state |6⟩ = ∑ �=|P=⟩#==1  with ∑ |�=|2#==1 = 1 with respect to 

{P=}= is seen as saying that the state |6⟩ has property |P=⟩ with probability |�=|2. 
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In general, any decomposition of a Hilbert space into mutually orthogonal subspaces, with the property that 

any quantum state can be uniquely expressed as the sum of the states from such subspaces, represents an 

observable (a measuring device). There are no other observables.  

In so called “relative state interpretation” of quantum mechanics, a quantum state is interpreted as an 

objective real physical object. 

In so called “information view of quantum mechanics”, a quantum state is interpreted as a speci=cation of 

our knowledge (or beliefs) probabilities of all experiments that can be performed with the state. The 

idea that quantum states describe the reality is therefore abandoned.  

“A quantum state is a useful abstraction which frequently appears in the literature, but does not really exists 

in nature.” A. Peres (1993) 

IV.C.7 Quantum (projection) measurements 

A quantum state is observed (measured) with respect to an observable – a decomposition of a given Hilbert 

space into orthogonal subspaces (such that each vector can be uniquely represented as a sum of vectors of 

these subspaces). There are two outcomes of a projection measurement of a state |6⟩: 
• Classical information into which subspace projection of |6⟩ was made 

• A new quantum state |6′⟩ into which the state |6⟩ collapses 

The subspace into which projection is made is chosen randomly and the corresponding probability is 

uniquely determined by the amplitudes and the representation of |6⟩ at the basis states of the subspace. 

Before quantum physics, it was take for granted that when physicists measure something, they are gaining 

knowledge of a pre-existing state – a knowledge of an independent fact about the world. Quantum physics 

says otherwise: things are not determined except when they are measured, and it is only by being measured 

that they take on speciQc values. A quantum measurement forces a previously indeterminate system 

to take on a de=nite value. 

IV.C.8 Probabilistic system vs. quantum system 

Let’s illustrate, on an example, a principal di-erence between a quantum evolution and a classical probabilistic 

evolution. If a qubit system develops under the evolution 

|0⟩ → 1√2 (|0⟩ + |1⟩), |1⟩ → 1√2 (|0⟩ − |1⟩) 
Then, after one step of evolution, we observe both |0⟩ and |1⟩ with the probability 12, but after two steps we 

get: 

|0⟩ → 1√2( 1√2 (|0⟩ + |1⟩) + 1√2 (|0⟩ − |1⟩)) = |0⟩ 
Therefore, any observation gives |0⟩ with probability 1. 

On the other hand, in case of the classical probabilistic evolution: 

[0] → 12 ([0] + [1]), [1] → 12 ([0] + [1]) 
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We have after one step of evolution both 0 and 1 with the same probability 12 but after two septs, we have 

[0] → 12(12 ([0] + [1]) + 12 ([0] + [1])) = 12 ([0] + [1]) 
Therefore, after two steps of evolution, we have again both values 0 and 1 with the same probability 12. 
In the quantum case, during the second evolution step, amplitudes at |1⟩ cancel each other and we have so-

called destructive interference. At the same time, amplitudes at |0⟩ amplify each other and we have so-

called constructive interference.  

IV.C.9 Loss of determinism 

Example of a beam splitter: identical photons get transmitted or reRected randomly. 

 

1: Incident light 

2: 50% transmitted light 

3: 50% reRected light 

 

Mach-Zehnder interferometer: send single photos one by one.  

There is interference happening in the second beam splitter: each photon 

interferes with itself! This appears as if each photon is on both beams 

at the same time 

|0⟩ → 1√2( 1√2 (|0⟩ + |1⟩) + 1√2 (|0⟩ − |1⟩)) = |0⟩ 
  



Prof. Dr. Jean-Pierre Seifert Quantum Computing
 

Théo Saulus Page 25 of 56 TU Berlin, summer 2022 

V.V.V.V. Quantum circuitsQuantum circuitsQuantum circuitsQuantum circuits    

V.A One qubit 

Two dimensional quantum systems are called qubits. A single qubit has a wave function which we write as |�⟩ = �0|0⟩ + �1|1⟩. To be valid, the qubit wave function must verify |�0|2 + |�1|2 = 1. 

V.A.1 Measuring qubits 

A qubit, like a bit, is a quantum system with two possible states, 0 and 1. When we observe a qubit, we get 

the result 0 or the result 1. 

If, before we observe the qubit the wave function of the qubit is |�⟩ = �0|0⟩ + �1|1⟩, then: 

• the probability that we observe 0 is |�0|2 and then new wave function for the qubit is |0⟩ 
• the probability that we observe 1 is |�1|2 and then new wave function for the qubit is |1⟩ 
• We thus say measuring in the computational basis. 

Example: We are given a qubit with wave function |�⟩ = 1√3 |0⟩ + F√23 |1⟩, which norm is ‖|�⟩‖ =
√∣ 1√3∣2 + ∣F√23∣2 = 1. If we observe the system in the computational basis, then we get outcome 0 with 

probability ∣ 1√3∣2 = 13 (and the new wave function is |0⟩), and we get outcome 1 with probability ∣F√23∣2 = 23 

V.A.2 Unitary evolution for qubits 

Unitary evolution will be described by a two dimensional unitary matrix k = (k00 k01k10 k11).  

If initial qubit wave function is |�⟩ = �0|0⟩ + �1|1⟩ = (�0�1), then this evolves to  

|�′⟩ = k|�⟩ = (k00�0 k01�1k10�0 k11�1) 

Example: For k = ( 1√2 1√2− =√2 =√2
) and |�⟩ = 12 |0⟩ + √32 |1⟩ = ( 12√32

), we have: 

|�′⟩ = k|�⟩ =
⎝⎜
⎜⎜⎜⎜
⎛ 1 + √32√2

F −1 + √32√2 ⎠⎟
⎟⎟⎟⎟
⎞ = 1 + √32√2 |0⟩ + F −1 + √32√2 |1⟩ 
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V.A.3 Single qubit quantum circuits 

Circuit diagrams for evolving qubits: 

           

V.B Two qubits 

Two qubits, like bits, can be in one of four di-erent states: 00, 01, 10, 11. 

The wave function for two qubits thus has four components: 

|�⟩ =
⎝⎜
⎜⎛

�00�01�10�11⎠
⎟⎟⎞ = �00|00⟩ + �01|01⟩ + �10|10⟩ + �11|11⟩ 

Examples:  

⎝⎜
⎜⎜⎜⎜
⎜⎜⎜⎛

1√2F√200 ⎠⎟
⎟⎟⎟⎟
⎟⎟⎟⎞ = 1√2 |00⟩ + F√2 |01⟩,

⎝⎜
⎜⎜⎜⎜
⎜⎜⎜⎛

1200√32 ⎠⎟
⎟⎟⎟⎟
⎟⎟⎟⎞ = 12 |00⟩ + √32 |11⟩,

⎝⎜
⎜⎛

1000⎠⎟
⎟⎞ = |00⟩ 

V.B.1 Separable qubits 

Sometimes, we can write the wave function of two qubits as the tensor product of two one qubit wave 

function: 

|�⟩ = |�⟩ ⊗ |�⟩ 
More explicitly, for |�⟩ = �0|0⟩ + �1|1⟩ and |�⟩ = �0|0⟩ + �1|1⟩: 

|�⟩ = (�0|0⟩ + �1|1⟩) ⊗ (�0|0⟩ + �1|1⟩) = �0�0|0⟩ ⊗ |0⟩ + �0�1|0⟩ ⊗ |1⟩ + �1�0|1⟩ ⊗ |0⟩ + �1�1|1⟩ ⊗ |1⟩ = �0�0|00⟩ + �0�1|01⟩ + �1�0|10⟩ + �1�1|11⟩ 
Example: for |�⟩ = 12 |0⟩ + √32 |1⟩ and |�⟩ = =√5 |0⟩ + 2√5 |1⟩: 

|�⟩ = F2√5 |00⟩ + 1√5 |01⟩ + √3F2√5 |10⟩ + √35 |11⟩ 
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V.B.2 Entangled qubits 

If |�⟩ is not a separable state, then it is entangled.  

Example: |�⟩ =
⎝⎜
⎜⎜⎜⎛

1200√32 ⎠⎟
⎟⎟⎟⎞ = 12 |00⟩ + √32 |11⟩. Assume that |�⟩ = |�⟩ ⊗ |�⟩.  

Then, |�⟩ = �0�0|00⟩ + �0�1|01⟩ + �1�0|10⟩ + �1�1|11⟩, which implies that �0�1 = 0 
Therefore, {�0 = 0 but this implies �0�0 = 0or�1 = 0 but this implies �1�1 = 0, which is contradictory. Thus |�⟩ is entangled. 

V.B.3 Measuring two qubits 

If we measure both qubits in the computational basis, then we get one of four outcomes: 00, 01, 10, 11.  

If the wave function for the two qubits is |�⟩ =
⎝⎜
⎜⎛

�00�01�10�11⎠
⎟⎟⎞ = �00|00⟩ + �01|01⟩ + �10|10⟩ + �11|11⟩ 

Then, 

• Probability of 00 is |�00|2, and the new wave function is |00⟩ 
• Probability of 01 is |�01|2, and the new wave function is |01⟩ 
• Probability of 10 is |�10|2, and the new wave function is |10⟩ 
• Probability of 11 is |�11|2, and the new wave function is |11⟩ 

Example: for |�⟩ = =2√5 |00⟩ + 1√5 |01⟩ + √3=2√5 |10⟩ + √35 |11⟩ 
• Probability of 00 is ∣ =2√5∣2 = 120 
• Probability of 00 is ∣ 1√5∣2 = 15 
• Probability of 00 is ∣√3=2√5∣2 = 320 
• Probability of 00 is ∣√35∣2 = 35 

V.B.4 Two qubits evolutions 

The wave function of an ) dimensional quantum system evolves in time according to a unitary matrix k . If 

the wave function is initially |�⟩, then after the evolution k  the new wave function is |�′⟩ = k|�⟩ 

Example: if k =
⎝⎜
⎜⎜⎜⎜
⎛ 1√2 =√2 0 0

=√2 1√2 0 0
0 0 0 10 0 1 0⎠⎟

⎟⎟⎟⎟
⎞

 and |�⟩ =
⎝⎜
⎜⎜⎜⎛

1200√32 ⎠⎟
⎟⎟⎟⎞ = 12 |00⟩ + √32 |11⟩, then |�′⟩ = k|�⟩ =

⎝⎜
⎜⎜⎜⎜
⎜⎛

12√2=2√2√320 ⎠⎟
⎟⎟⎟⎟
⎟⎞

 

V.B.5 Manipulations of two qubits 

We can apply unitary operations on only one of the qubits at a time, using tensor product. Let’s consider  k =
¦ ⊗ 2, with 2 = (1 00 1): this only modifies the first qubit. Conversely, k = 2 ⊗ ¦  only acts on the second qubit. 
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Tensor product of matrices:  

If ¦ = (¦00 ¦01¦10 ¦11) and § = (§00 §01§10 §11), then k = ¦ ⊗ § =
⎝⎜
⎜⎜⎜⎛

¦00§00 ¦00§01 ¦01§00 ¦01§01¦00§10 ¦00§11 ¦01§10 ¦01§11¦10§00 ¦10§01 ¦11§00 ¦11§01¦10§10 ¦10§11 ¦11§10 ¦11§11⎠
⎟⎟⎟⎟⎞ 

Example: for ¦ = ( 1√2 =√2=√2 1√2
) and § = ( 12

√32√32 12
), then k = ¦ ⊗ § = ⋯ 

Example: for ¦ = ( 1√2 =√2=√2 1√2
) and 2 = (1 00 1), then k = ¦ ⊗ 2 =

⎝⎜
⎜⎜⎜⎜
⎜⎜⎛

1√2 0 =√2 0
0 1√2 0 =√2=√2 0 1√2 0
0 =√2 0 1√2⎠

⎟⎟⎟⎟
⎟⎟⎟⎞ 

Example: for ¦ = ( 1√2 =√2=√2 1√2
) and 2 = (1 00 1), then k = 2 ⊗ ¦ =

⎝⎜
⎜⎜⎜⎜
⎜⎜⎛

1√2 =√2 0 0
=√2 1√2 0 0
0 0 1√2 =√20 0 =√2 1√2⎠

⎟⎟⎟⎟
⎟⎟⎟⎞ 

V.B.6 Two qubits quantum circuits 

A two qubit unitary gate: 

 

Sometimes our output is known to be separable: 

 

Sometimes we act only on one qubit: 

 

V.B.7 Computational basis, unitary matrices and linearity 

Let’s consider |�⟩ = �00|00⟩ + �01|01⟩ + �10|10⟩ + �11|11⟩ 
Then |�′⟩ = k|�⟩ = �00k|00⟩ + �01k|01⟩ + �10k|10⟩ + �11k|11⟩ 
We can act on each computational basis state and then resume. This simpliQes the calculations considerably. 

In particular, by examining the unitary evolution of all computational basis states, we can explicitly determine 

what is the unitary matrix. 
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Example: for k =
⎝⎜
⎜⎜⎜⎜
⎛ 1√2 =√2 0 0

=√2 1√2 0 0
0 0 0 10 0 1 0⎠⎟

⎟⎟⎟⎟
⎞

 and |�⟩ =
⎝⎜
⎜⎜⎜⎛

1200√32 ⎠⎟
⎟⎟⎟⎞ = 12 |00⟩ + √32 |11⟩ 

|�′⟩ = k|�⟩ 
= 12k|00⟩ + √32 k|11⟩ 
= 12( 1√2 |00⟩ + F√2 |01⟩) + √32 |10⟩ 
= 12√2 |00⟩ + F2√2 |01⟩ + √32 |10⟩ 

Example: for k =
⎝⎜
⎜⎜⎜⎜
⎛ 1√2 =√2 0 0

=√2 1√2 0 0
0 0 0 10 0 1 0⎠⎟

⎟⎟⎟⎟
⎞

 and |�⟩ =
⎝⎜
⎜⎜⎜⎛

12√3200 ⎠⎟
⎟⎟⎟⎞ = 12 |00⟩ + √32 |01⟩ 

|�′⟩ = k|�⟩ 
= 12k|00⟩ + √32 k|01⟩ 
= 12( 1√2 |00⟩ + F√2 |01⟩) + √32 ( F√2 |00⟩ + 1√2 |01⟩) 

= 1 + F√32√2 |00⟩ + F + √32√2 |01⟩ 
V.B.8 Some two qubit gates 

 
Controlled-NOT 

⎝⎜
⎜⎛

1 0 0 00 1 0 00 0 0 10 0 1 0⎠⎟
⎟⎞ 

If the control is 1, we 

apply XOR to the 

target. 

If the control is 0, 

nothing happens. 

 

Controlled-U 

⎝⎜
⎜⎜⎛

1 0 0 00 1 0 00 0 k00 k010 0 k10 k11⎠
⎟⎟⎟⎞ 

Depending on the 1st 

qubit, we do or don’t 

apply k  to the 

second qubit. 

 
Controlled-phase 

⎝⎜
⎜⎛

1 0 0 00 1 0 00 0 1 00 0 0 −1⎠⎟
⎟⎞  

 
Swap 

⎝⎜
⎜⎛

1 0 0 00 0 1 00 1 0 00 0 0 1⎠⎟
⎟⎞  
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Example: controlled-H, k = 
⎝⎜
⎜⎜⎜⎜
⎛1 0 0 00 1 0 00 0 1√2 1√20 0 1√2 −1√2⎠

⎟⎟⎟⎟⎟
⎞

 and |�⟩ =
⎝⎜
⎜⎛

0001⎠⎟
⎟⎞ = |11⟩ 

|�′⟩ = k|�⟩ =
⎝⎜
⎜⎜⎜⎜
⎜⎜⎜⎛

001√2
− 1√2⎠⎟

⎟⎟⎟⎟
⎟⎟⎟⎞ = 1√2 (|01⟩ − |11⟩) 

Probability of 10 is 12, probability of 11 is 12 and probability of 00 and 01 is 0 

V.C Measurement 

V.C.1 Matrices, bras and kets 

So far we have used bras and kets to describe row and column vectors. We can also use them to describe 

matrices, thanks to the outer product of two vectors: 

|�⟩⟨¨| = (�1¨1∗ �1¨2∗�2¨1∗ �2¨2∗) 

We can expand a matrix about all of the computational basis outer products 

© = ∑©=g|F⟩⟨ª|=,g
= ⎝⎜

⎛ ©00 ⋯ ©0,¬−1⋮ ⋱ ⋮©¬−1,0 ⋯ ©¬−1,¬−1⎠⎟
⎞ 

Example: for © = ( 1 F−1 −F) 

|0⟩⟨0| = (1 00 0) , |0⟩⟨1| = (0 10 0) , |1⟩⟨0| = (0 01 0) , |1⟩⟨1| = (0 00 1) 

Thus, © = |0⟩⟨0| + F|0⟩⟨1| − 1|1⟩⟨0| − F|1⟩⟨1|     
This notation makes it easy to operate on kets and bras: 

©|�⟩ = ∑©=g|F⟩⟨ª|�⟩
=,g

, ⟨¨|© = ∑©=g⟨¨|F⟩⟨ª|
=,g

,  where ⟨⋅ | ⋅⟩ are complex numbers 

Example: for © = ( 1 F−1 −F) and |�⟩ = ( 12√32
) 

©|�⟩ = (|0⟩⟨0| + F|0⟩⟨1| − 1|1⟩⟨0| − F|1⟩⟨1|) (12 |0⟩ + √32 |1⟩)  
= 1 + F√32 |0⟩ − 1 + F√32 |1⟩ 

V.C.2 Projectors 

The projector onto a state |�⟩ of unit norm is given by 0° = |�⟩⟨�|.  
Thus, 0°|�⟩ = |�⟩⟨�|�⟩ = |�⟩ and 0°|¨⟩ = |�⟩⟨�|¨⟩ = (⟨�|¨⟩)|�⟩. 
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Example: for |�⟩ = |0⟩, and thus 0° = |0⟩⟨0|. Let’s consider |¨⟩ = 12 |0⟩ + √32 |1⟩. The projection is therefore  

0°|¨⟩ = |0⟩⟨0|(12 |0⟩ + √32 |1⟩) = 12 |0⟩ 
V.C.3 Measurement rule 

If we measure a quantum system whose wave function is |�⟩ in the basis |¨=⟩, then the probability of getting 

the outcome corresponding to |¨=⟩ is given by 

ℙ(|¨=⟩) = |⟨¨=|�⟩|2 = ⟨�|¨=⟩⟨¨=|�⟩ = ⟨�∣0´µ ∣�⟩ 
The new wave function of the system after getting the measurement outcome corresponding to |¨=⟩ is 
given by 

|�′⟩ = 0´µ |�⟩
√ℙ(|¨=⟩) 

For measuring in a complete basis, this reduces to our normal prescription for quantum measurement. 

However, suppose that we measure the Qrst of two qubits in the computational basis. Then we can form the 

two projectors: 

00 ⊗ 2 = |0⟩⟨0| ⊗ 201 ⊗ 2 = |1⟩⟨1| ⊗ 2     where 2 = |0⟩⟨0| + |1⟩⟨1| 
If the two qubit wave function is |�⟩ then the probabilities of these two outcomes are  

ℙ(0) = ⟨�|00 ⊗ 2|�⟩ℙ(1) = ⟨�|01 ⊗ 2|�⟩ 
And the new state of the system is given by either  

|�′⟩ = 00 ⊗ 2|�⟩√ℙ(0)  if the outcome was 0, |�′⟩ = 01 ⊗ 2|�⟩√ℙ(1)  if the outcome was 1 
Example: for |�⟩ = 12 |00⟩ + 12 |01⟩ + 1√2 |11⟩, we decide to measure the Qrst qubit. What is the probability of 0? 

00 ⊗ 2 = |0⟩⟨0| ⊗ (|0⟩⟨0| + |1⟩⟨1|) = |00⟩⟨00| + |01⟩⟨01| 
Thus, 

ℙ(0) = ⟨�|00 ⊗ 2|�⟩ 
= ⟨�| (12 |00⟩ + 12 |01⟩) 

= 12 

We can thus obtain the new wave function supposing 0 is measured: 

|�′⟩ = 00 ⊗ 2|�⟩√ℙ(0)  

= 12 |00⟩ + 12 |01⟩1√2
 

= |0⟩ ⊗ ( 1√2 |0⟩ + 1√2 |1⟩) 
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Finally, and as we could have seen it from the beginning, ℙ(0) = 14 + 14 = 12 
V.C.4 Instantaneous communication? 

Suppose two distant parties each have a qubit and their joint quantum wave function is |�⟩ = 1√2 |00⟩ + 1√2 |11⟩. 
If one party now measures its qubit, then 

ℙ(0) = 12  and |�′⟩ = |0⟩ ⊗ |0⟩
ℙ(1) = 12  and |�′⟩ = |1⟩ ⊗ |1⟩ 

The other parties qubit is now either |0⟩ or |1⟩.  
Is that instantaneous communication? No, because these two results happen with probabilities: correlation 

does not imply communication. 

V.C.5 Important single qubit unitary matrices  

Pauli matrices 

 

Bit Rip (classical not gate) l0 = 2l1 = ¸l2 = ¹l3 = º
 and lg2 = 2  

Phase Rip 

Example: 

 

Hadamard gate 

 
 

32 = 2 

Example: 

 

This allows us to compute easily 3¸3: 

3¸3 = 3(3º3)3 = 2º2 = º 
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Example: Using the equality 3¸3 = º, we can prove an interesting circuit identity: 

 

V.C.6 Reversible classical gates 

A reversible classical gate on » bits is a one to one function on the 2¼ values of these bits. 

 

Example:  

00 → 0001 → 0110 → 1111 → 10
 is reversible,

00 → 0001 → 0010 → 1011 → 11
 is not reversible 

We can represent reversible classical gates by a permutation matrix. Permutation matrices are matrices in 

which every row and column contains at most one 1 and the rest of the elements are 0. 

Example:  

00 → 0001 → 0110 → 1111 → 10
 is represented by: 

⎝⎜
⎜⎛

1 0 0 00 1 0 00 0 0 10 0 1 0⎠⎟
⎟⎞ 

V.C.7 Quantum versions of reversible classical gates 

We can turn reversible classical gates into unitary quantum gates: use permutation matrix as unitary 

evolution matrix. 

Example: the previous matrix is a controlled-NOT quantum gate. 

V.D Deutsch’s problem 

“Complexity theory has been mainly concerned with questions upon the computation of functions: which 

functions can be computed, how fast, and how much memory? With quantum computers, as with classical 
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stochastic computers, one must also ask ‘and with what probability?’ We have seen that the minimum 

computation time for certain tasks can be lower for quantum computers than for classical computers. 

Complexity theory for quantum computers deserved further investigation.” David Deutsch, 1985 

V.D.1 Classical Deutsch’s problem 

Suppose you are given a black box which computes one of the following four reversible gates: 

 

Deutsch’s (classical) problem: How many times do we have to use this black box to determine whether we 

are given the Qrst two or the second two? 

Notice that for every possible input, this des not separate the “constant” and “balanced” sets. This implies 

at least one use of the black box is needed. Querying the black box with 00 and 10 distinguishes between 

these two sets. Two uses of the black box are necessary and suKcient. 

V.D.2 Quantum Deutsch’s problem 

 

Deutsch’s (quantum) problem: How many times do we have to use these quantum gates to determine whether 

we are given the Qrst two or the second two? 
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V.D.3 Make use of Hadamard gates 

What if we perform Hadamard gates before and after the quantum gate? 

 

Explanations for the last gate: 
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Example: with some inputs 

 

By querying with quantum states we are able to distinguish the Qrst two (constant) from the second two 

(balanced) with only one use of the quantum gate! This is the Qrst quantum speedup, in 1985. 
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VI.VI.VI.VI. Simple quantum algorithmsSimple quantum algorithmsSimple quantum algorithmsSimple quantum algorithms    

Quantum algorithms that are more eKcient than their classical counterparts: Deutsch, Deutsch-Jozsa and 

Simon. We will use the power of quantum parallelism, constructive and destructive interference and 

entanglement. 

VI.A Quantum parallelism 

Let  

� ∶ {0,… , 2# − 1} → {0,1} 
� ′ ∶ (,, �) → (,, � ⊕ �(,)) 

where , ∈ {0,… , 2# − 1} and � ∈ {0,1}, with ⊕ being the addition modulo 2. 

Then, � ′ is one-to-one, and therefore there is a unitary transformation k. such that k. |,⟩|0⟩ = |,⟩|�(,)⟩. 
Let’s consider the following state 

|5⟩ = 1√2# ∑|F⟩|0⟩2�−1
==0

,   where |F⟩ = |F0⟩ ⊗ …⊗ |F#−1⟩ 
Then, with a single application of the mapping k. we will get  

k. |5⟩ = 1√2# ∑|F⟩|�(F)⟩2�−1
==0

 

Thus, in a single computation step, 2# values of � are computed. 

VI.A.1 Interpretation of quantum parallelism 

The last application of the unitary transformation k. results in a state with 2# values of function � . Such a 

massive parallelism is an important part of the magic quantum computation exhibits. However, the major 

part of such a magic is only apparent.  

Actually, one cannot say that the result of such a computation is 2# evaluations of � . All one can say is that 

such a unitary mapping results in a state that fully speciQes all values of the function � . But there is, in 

general, no way to learn from the resulting state all the values of the function � . There is nonetheless often 

a way to get, using such quantum parallelism, important relations between values of the function � , usually 

at the price of being no longer able to get values of � , but instead to its arguments. 

It is wrong, and deeply misleading to sat that after an application of the unitary matrix k. the quantum 

computer has evaluated the function �(,) for all 0 ≤ , ≤ 2#. Such assertion are based on the mistaken view 

that each quantum state encodes a property inherent in the qubits: as long as you have not measured, you 

know nothing! The state encodes only the possibilities available for the extraction of information 

from those qubits. 

Due to that parallelism, quantum computing nevertheless permits quantum machines to perform tricks that 

no classical computer can accomplish. 
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VI.A.2 Measurement  

If we measure the second register of the state  

|6⟩ = 1√2# ∑ |F⟩|�(F)⟩2�−1
==0

 

with respect to the standard basis {|Á⟩ | Á ∈ {0,1}#}, then the state |6⟩ collapses into one of the states  

∣6n⟩ = 1√» ∑ |,⟩|Â⟩ 
{m|.(m)=n}

 

where Â is in the range of the values of the function � and » = |{,|�(,) = Â}| 
The collapse into the state ∣6n⟩ happens with the probability 

»2# 

i.e., in the classical world one gets information which Â in the range of � , in the second register, has been 

(randomly) chosen. 

This fact we usually interpret as that Â is the (classical) result of the measurement of the second register of 

the state |6⟩, with respect to the standard basis. 

VI.A.3 Reduction of projective measurement to computational basis 

measurement 

∑Og∣6g⟩g
 

 

|ª⟩ 
 

∣6g⟩ 

The above Qgure shows one way how to reduce the measurement with respect to any orthogonal basis {∣6g⟩}g=1,…,2� to a measurement with respect to the computational basis {|ª⟩}g=1,…,2�. 

Through measurement the state |ª⟩ is obtained with probability ∣Og∣2. The state of the system after this 

measurement is |ª⟩. After inverse unitary k−1 is applied, the resulting state will be ∣6g⟩ of the standard basis. 

At Qrst, a unitary transformation k  is applied, that transforms the basis {∣6g⟩}g to the computational basis. 

 ∑Og∣6g⟩g
 

 

 

|000⟩ 
 

 ∣6g⟩ 
 

 

ª 
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Another way to implement the von Neumann measurements is described in the schema above. First the 

outcome of the transformation  k  is mapped into ancillary registers to create the state ∑ Og|ª⟩|ª⟩g . The 

inverse basis change unitary k−1 leaves as result the state ∑ ∣6g⟩|ª⟩g . The following measurement of the 

ancillary register in the computational basis gives the outcome ª with probability ∣Og∣2 and leaves the main 

register in the state ∣6g⟩. 
VI.A.4 �Å and �Å operators 

For the function � ∶ {0,… , 2# − 1} → {0,1}, we can deQne the following operators  

¦. ∶ |,⟩ → (−1).(m)|,⟩ 
k. ∶ |,, �⟩ → |,, � ⊕ �(,)⟩ 

We can express ¦. with k. if we initialize the ancilla � to the state � ≔ 1√2 (|0⟩ − |1⟩) = |−⟩ as follows 

k. ∣,, 1√2 (|0⟩ − |1⟩)⟩ = 1√2 (|,, 0 ⊕ �(,)⟩ − |,, 1 ⊕ �(,)⟩) 
= (−1).(m)|,⟩ ⊗ 1√2 (|0⟩ − |1⟩) 
= (−1).(m)|,⟩ ⊗ |−⟩ 

VI.B Deutsch’s problem 

Given a function � ∶ {0,1} → {0,1} as a black box, the task is to determine whether � is constant of balanced, 

i.e., 

�(0) ⊕ �(1) = 0 (constant) 
or 

�(0) ⊕ �(1) = 1 (balanced) 
In classical computing, 2 calls of � are required. In quantum computing, 1 call of � is suKcient. 

VI.B.1 Randomized solution 

 

Note that contrary to the solution we previously saw, there is no 3 gate in the bottom left. 

The quantum algorithm as presented above solves the problem with probability ½ in such a way that we 

know whether the answer is correct. 
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Let’s analyze the algorithm, step by step: 

|00⟩ 
↓ 

(3 ⊗ 2)|00⟩ = |+⟩|0⟩ 
↓ 

k. |+,0⟩ = 1√2 (|0, �(0)⟩ + |1, �(1)⟩) 
↓ 

If � is constant 

k. |+,0⟩ =
⎩{{
⎨{
{⎧ 1√2 (|0,0⟩ + |1,0⟩)

or1√2 (|0,1⟩ + |1,1⟩)
 

↓ 

If � is balanced 

k. |+,0⟩ =
⎩{{
⎨{
{⎧ 1√2(|0,0⟩ + |1,1⟩)

or1√2 (|0,1⟩ + |1,0⟩)
 

Entangled outputs 

↓ 

3k. |+,0⟩ =
⎩{{
⎨{
{⎧12 (|00⟩ + |01⟩ + |10⟩ + |11⟩)or12 (|00⟩ − |01⟩ + |10⟩ − |11⟩)

 

↓ 

3k. |+,0⟩ =
⎩{{
⎨{
{⎧12 (|00⟩ + |01⟩ + |10⟩ − |11⟩)or12 (|00⟩ − |01⟩ + |10⟩ + |11⟩)

 

↓ 

In each case, notwithstanding we measure 0 or 1 on 

the second qubit, the Qrst qubit will be in state |+⟩ = 1√2 (|0⟩ + |1⟩) 

↓ 

If we measure the second qubit to 0, then the 

overall state is |00⟩ + |10⟩ 
If we measure the second qubit to 1, then the 

overall state is |01⟩ − |11⟩ or −|01⟩ + |11⟩ 
Summing up our situation: 

• Measure second qubit as 0, then the Qrst qubit will be in state 1√2 (|0⟩ + |1⟩) or − 1√2 (|0⟩ + |1⟩) 
• Measure second qubit as 1,  

o then the Qrst qubit will be in state 1√2 (|0⟩ + |1⟩) if � is constant 

o then the Qrst qubit will be in state 1√2 (|0⟩ − |1⟩) if � is balanced  

After the last Hadamard gate: 

• Measure second qubit as 0, then the Qrst qubit will be in state |0⟩ or −|0⟩ 
• Measure second qubit as 1,  

o then the Qrst qubit will be in state |0⟩ if � is constant 

o then the Qrst qubit will be in state |1⟩ if � is balanced  
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If the measurement of the second qubit in the above provides 0, we have lost all information about � . 

Otherwise, the measurement of the Qrst qubit yields the correct result.  

VI.B.2 Deterministic solution 

 

First, apply the Hadamard transform on both registers in the initial state |0,1⟩ and then k. : 

|0,1⟩ b2→ 12 (|0⟩ + |1⟩)(|0⟩ − |1⟩) 
= 12 (|0⟩(|0⟩ − |1⟩) + |1⟩(|0⟩ − |1⟩)) 
�Î→ 12 (|0⟩(|0 ⊕ �(0)⟩ − |1 ⊕ �(0)⟩) + |1⟩(|0 ⊕ �(1)⟩ − |1 ⊕ �(1)⟩)) 
= 12 ((−1).(0)|0⟩ + (−1).(1)|1⟩)(|0⟩ − |1⟩) 

Here are all the possibilities: 

if � is constant 
⎩{⎨
{⎧ if �({0,1}) = 0, 12 (|0⟩ + |1⟩)(|0⟩ − |1⟩) = |0′⟩|1′⟩

if �({0,1}) = 1, 12 (|0⟩ + |1⟩)(|1⟩ − |0⟩) = −|0′⟩|1′⟩  

if � is constant 
⎩{⎨
{⎧ if �(0) = 0 and �(1) = 1, 12 (|0⟩ − |1⟩)(|0⟩ − |1⟩) = |1′⟩|1′⟩

if �(0) = 1 and �(1) = 0, 12 (|0⟩ − |1⟩)(|1⟩ − |0⟩) = −|1′⟩|1′⟩ 

By measuring the Qrst bit, with respect to the dual basis, we can immediately see whether � is constant or 

balanced: 

 

VI.C Deutsch-Jozsa problem  

VI.C.1 Even-odd problem 

A function � ∶ {0,1}2 → {0,1} is called even (resp. odd) if the range of � has an even (resp. odd) number 

of ones. Classically, given such a function � as an oracle, one needs 4 calls of � to determine whether � is 

even or odd.  
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One a quantum computer, one can do: 

(3 ⊗ 3)¦.(2 ⊗ 3)¦.(3 ⊗ 3)|00⟩ =
⎩{{⎨
{{⎧ 1√2(±|00⟩ + |01⟩) if � is even

1√2 (±|10⟩ + |01⟩) if � is odd  

Therefore, using only two quantum calls of � , the problem is transformed into the problem to distinguish 

two non-orthogonal quantum states. Unfortunately, there is no projection measurement that can faithfully 

distinguish such non-orthogonal states. 

VI.C.2 Deutsch-Jozsa promise problem 

Given a function � ∶ {0,1}# → {0,1} as a black box, that is (promised to be) balanced or constant, decide 

which property � has. 

Classical deterministic computers need, in the worst case, exponential time to solve the problem. Surprisingly, 

there is a quantum algorithm to solve the problem by applying � only once. 

VI.C.3 First solution 

Let us consider one quantum register with � qubits and apply the Hadamard transformation 3# to this 

register. This yields: 

|0#⟩ b�→ |6⟩ ≝ 1√2# ∑|F⟩2�−1
==0

 

By applying now the transformation ¦. only on this register, we get: 

¦. |6⟩ = |6′⟩ ≝ 1√2# ∑ (−1).(=)|F⟩2�−1
==0

 

Thanks to these operations, the values of � were transferred to their amplitudes. Let’s make use of quantum 

superposition and a proper observable to now solve our initial problem. 

Let us consider the observable Ñ = {ÒÓ, ÒÔ}, where ÒÓ is the one-dimensional subspace spanned by the 

vector  

|5Ó⟩ = 1√2# ∑|ª⟩2�−1
g=0

 

and  

ÒÔ = ÒÓ⊥ 

The projection of |6′⟩ onto Ñ has the form:  

|6′⟩ = O|5Ó⟩ + P|5Ô⟩ 
with |O|2 + |P|2 = 1 and where |5Ô⟩ is a vector of ÒÔ such that |5Ô⟩ ⊥ |5Ó⟩. Thus, a measurement by Ñ 

provides “the value � or �” with probability |O|2 or |P|2. In particular, 

O = ⟨5Ó|6′⟩ 
= 1√2# ∑ ⟨ª|2�−1

g=0
1√2# ∑ (−1).(=)|F⟩2�−1

==0
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= 12# ∑ ∑(−1).(=)⟨ª|F⟩2�−1
==0

2�−1
g=0

 

= 12# ∑ (−1).(=)2�−1
==0

 because ⟨ª|F⟩ = 1 iff ª = F 
Thus,  

• If � is balanced, then the sum for O contains the same number of 1 and -1, and therefore O = 0. A 

measurement of |6′⟩ with respect to Ñ provides, for sure, the outcome �. 
• If � is constant, then either O = 1 or O = −1, and therefore the measurement with respect to Ñ 

always gives the outcome �. 

Therefore, a single measurement of |6′⟩, with respect to Ñ provides the solution to the problem with 

probability 1. 

VI.C.4 Second solution 

If the Hadamard transformation is applied to the state |6′⟩, we get  

3#|6′⟩ = 1√2# ∑ (−1).(=)2�−1
==0

1√2# ∑(−1)g⋅=|ª⟩2�−1
g=0

 

= 12# ∑ ∑ (−1)g⋅=(−1).(=)|ª⟩2�−1
==0

2�−1
g=0

 

Thus, 

• If � is constant,  

∑(−1)g⋅=2�−1
==0

= { 0 if × ≠ 02# if ª = 0 

• If � is balanced,  

∑ (−1)g⋅=(−1).(=)2�−1
==0

= 0 iff × = 0 

One measurement therefore shows with probability 1 whether � is constant or balanced: 3#|6′⟩ = |0⟩ with 

probability 1 i- � is constant. 

VI.C.5 Randomized solution 

It is easy to show that although deterministic algorithms to solve the Deutsch-Jozsa problem for � = 2¼ 
requires 2¼−1 + 1 queries in the worst case, there are probabilistic algorithms to solve this problem relatively 

fast, if we are willing to tolerate some error. 

In particular, a randomized algorithm can solve the Deutsch-Jozsa problem with probability of error at most 13 with only two queries. The probability of error can be reduced to less than 12Ù with only » + 1 queries. 

Therefore, in spite of the fact that there is an exponential gap between deterministic classical and exact 

quantum query complexity, the gap between randomized classical complexity and quantum query complexity 

is in this case constant in the case of constant error: the advantage is vanishingly small. 
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VII.VII.VII.VII. Simon’s problemSimon’s problemSimon’s problemSimon’s problem    

Simon has discovered a simple problem with an expected quantum polynomial time algorithm, but having 

no polynomial time randomized algorithm. 

Let � ∶ {0,1}# → {0,1}# be a function such that either: 

• � is one-to-one 

• � is two-to-one, i.e., there exists a single G ∈ {0,1}# ≠ {0,… ,0} such that  

∀, ≠ ,′, �(,) = �(,′) ⇔ ,′ = , ⊕ G 
The task is to determine which of the above conditions holds for � , and in the second case, also determine G. 
To solve the problem, two registers are used, both with � qubits. The initial states are |0#⟩ and the 

Hadamard-twice scheme is used for Ü(�) repetitions 

VII.A Simon algorithm 

 

First, apply the Hadamard transformation on the =rst register with the initial value |0#⟩, to produce the 

superposition 

3#|0#⟩ ⊗ |0#⟩ = 1√2# ∑ |,,0#⟩
m∈{0,1}�

 

Then, apply k. to obtain the following 

|5⟩ = 1√2# ∑ |,, �(,)⟩
m∈{0,1}�

 

Finally, apply the Hadamard transformation on the =rst register again 

|5′⟩ = 12# ∑ (−1)m⋅n|Â, �(,)⟩
m,n∈{0,1}�

 

After all these steps, observe the resulting state to get a pair (Â, �(,)). 
VII.A.1 Case 1: � is one-to-one 

After performing the Qrst three steps of the above procedure, all possible states |Â, �(,)⟩ in the superposition 

are distinct and the absolute value of their amplitudes is the same: 12�. 

� − 1 independent applications of the above scheme (Hadamard twice) therefore produce � − 1 pairs (Â1, �(,1)),… , (Â#−1, �(,#−1)), distributed uniformly and independently over all 2# possible pairs (Â, �(,)). 
VII.A.2 Case 2: � is two-to-one 

In this case, there exists a single G ∈ {0,1}# ≠ {0,… ,0} such that  

∀, ≠ ,′, �(,) = �(,′) ⇔ ,′ = , ⊕ G 
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In such a case, for each Â and , the states |Â, �(,)⟩ and |Â, �(,) ⊕ G⟩ are identical. Their total amplitude O(,, Â) has the value  

O(,, Â) = 12# ((−1)m⋅n + (−1)(m⊕Ý)⋅n) 
If Â ⋅ G ≡ 0 �ßE 2 (even number), then 

, ⋅ Â ≡ (, ⊕ G) ⋅ Â �ßE 2 ≡ (, ⋅ Â) ⊕ (G ⋅ Â) �ßE 2 

Therefore, |O(,, Â)| = 12�−1 

Else, if Â ⋅ G ≡ 1 �ßE 2 (odd number), then |O(,, Â)| = 0, which means that this is never the case (zero 

probability) 

� − 1 independent applications of the above scheme (Hadamard twice) therefore yields � − 1 independent 

pairs (Â1, �(,1)),… , (Â#−1, �(,#−1)), such that ∀F ∈ {1, … , � − 1}, Â= ⋅ G ≡ 0 �ßE 2. 
VII.A.3 Summary 

In both cases, after � − 1 repetitions of the Hadamard twice scheme, � − 1 vectors Â= are obtained. If these 

vectors are linearly independent, then the system of � − 1 linear equations ∀F ∈ {1, … ,� − 1}, Â= ⋅ G ≡ 0 �ßE 2 
over ℤ2 can be solved to obtain G in the case � is two-to-one. Note that in the case � is one-to-one, G obtained 

in such a way is a random string. 

To distinguish these two cases, it is enough to compute �(0#) and �(G): if �(0#) ≠ �(G), then � is one-to-one. 

If the vectors obtained by this scheme are not linearly independent, then the whole process has to be repeated. 

Executing this algorithm » = Ü(�) times yields random Â1, … , Â¼ ∈ {0,1}# such that G ⋅ Â1 = ⋯ = G ⋅ Â¼ = 0. 

This is a system of » linear equations: 

(Â11 ⋯ Â1#⋮ ⋱ ⋮Â¼1 ⋯ Â¼#
) (G1⋮G#

) = (0⋮0)  �ßE 2 

With high probability, there is a unique non-zero solution that is G (which can be eKciently found by linear 

algebra). 

VII.A.4 Classical algorithm 

Any classical algorithm needs to perform Ω(√2#) queries to solve Simon’s problem. 

VII.B Application to quantum crypto attacks 

VII.B.1 The Even Mansour secret-key cipher 

Two keys »1 and »2, one public permutation â (the latter is very expensive to 

store: a 64 to 64 bits permutation requires 264 bits of storage). 

From a classic point of view, the attacker is allowed to ask for ä (stands for 

data) pairs of (¸, §) values and to evaluate +  (stands for time) pairs of (¹ , º) values. 

It has been proved that the upper bound on attack success is Ü(åæ2� ) 
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VII.B.2 Attacks on crypto algorithm 

The attacker listens to communication over classical channel, he can also query the classic black box with 

secret key. Let’s suppose that the attacker has a large quantum computer. 

Other existing quantum algorithms: 

• Recover key in Ü(2Ù2) with Grover’s algorithm 

• Find hash function preimage in Ü(2�2) with Grover’s algorithm 

• Find hash function collisions in Ü(2�3) but needs a Ü(2�3) hardware 

Quantum oracle access to encryption algorithm: a very strong model for 

adversary 

Let’s denote the cipher as ℰ¼1,¼2 , such that  

ℰ¼1,¼2(,) = â(, ⊕ »1) ⊕ »2 
We can then construct 

� ∶ {0,1}# → {0,1}# , → ℰ¼1,¼2(,) ⊕ â(,) 
This function fulQlls Simon’s promise: 

�(,) = â(, ⊕ »1) ⊕ »2 ⊕ â(,) �(, ⊕ »1) = â(, ⊕ »1 ⊕ »1) ⊕ »2 ⊕ â(, ⊕ »1) = â(,) ⊕ »2 ⊕ â(, ⊕ »1) 
Therefore, we can recover »1 with Ü(�) quantum queries. 

Similar attacks apply to block cipher modes, MACs, authenticated encryption, improving slide attacks. The 

aim is always to construct � such that �(,) = �(, ⊕ G) for some secret G. 
VII.B.3 Telecommunication crypto 

The entire cryptography of contemporary cellular networks is centered around seven secret-key algorithms 

aggregated into a single “Authentication and Key Agreement” known as AKA algorithm set, denoted �1,… , �5, �1∗, �5∗. 
We know that these seven algorithms are provably secure by all means in the classical world. But it is 

envisioned that 6G should not be broken even by quantum computers of arbitrary complexity. 
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VII.C Computational power of entanglement 

As illustrated in the following examples, in some cases there is a clever way to make use of quantum 

entanglement to compute eKciently some global properties of a function.  

VII.C.1 An example problem 

Let � ∶ {1,… , �} → {0,1} be given as a black box. To determine � classically, � calls of � are needed, to get 

the string ¨. = �(1)…�(�) 
Quantumly, this can be done, with probability greater than 0.95 using #2 + √� quantum calls of � . Indeed, 

we have  

∣¨.⟩ = 3# 1√2# ∑ (−1)m⋅´Î |,⟩
m∈{0,1}�

  
In order to compute , ⋅ ¨. one needs ℎ¨(,) calls of � , where ℎ¨(,) is the Hamming weight of ,. 

VII.C.2 Entanglement trick 

The trick is to compute the former identity but only for , such that ℎ¨(,) ≤ », for a suitable ». 

If ë¼ is a function such that for , ∈ {0,1}#, 

ë¼(,) = {, ⋅ ¨.  if ℎ¨(,) ≤ »0 otherwise  

Then,  
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¦ìÙ |,⟩ = {(−1)m⋅´Î |,⟩ if ℎ¨(,) ≤ »|,⟩ otherwise  

We will apply ¦ìÙ to the initial state |5¼⟩ deQned as 

|5¼⟩ = 1√©¼
∑ |,⟩

m∈{0,1}�
ℎ´(m)≤¼

 

where ©¼ = ∑ (#=)¼==0  

Then, 

|5¼′ ⟩ = ¦ìÙ |5¼⟩ = 1√©¼
∑ (−1)m⋅´Î |,⟩

m∈{0,1}�
ℎ´(m)≤¼

 

In order to compute |5¼′ ⟩, at most » calls of � are needed. Let’s now measure all � qubits of |5¼′′⟩ = 3#|5¼′ ⟩. 
The probability of getting ¨. is  

ℙ(|5¼′′⟩ yields at measurement ¨.) = ∣⟨¨. ∣5¼′′⟩∣2 
= ©¼2#  

= ∑(#=)2#
¼

==0
 

This probability is greater than 0.95 if » = #2 + √�. 

VII.C.3 Quantum Fourier Transform 

The Quantum Fourier Transform (QFT) is a quantum variant of the Discrete Fourier Transform (DFT). It 

maps a discrete function to another discrete one with equally distant points as its domain. 

For example, it maps a î-dimensional complex 

(�(0),… , �(î − 1)) into (�(̅0),… , �(̅î − 1)) 

where  

∀| ∈ {0,… , î − 1}, �(̅|) = 1√î ∑`2�=Óðñ �(�)ñ−1
Ó=0

 

The quantum version of the DFT is the unitary transformation  

∀, ∈ {0,… , î − 1}, òë+ñ ∶ |,⟩ → 1√î ∑`2�=Ómñ |�⟩ñ−1
Ó=0

 

The unitary matrix is thus 

ëñ = 1√î
⎝⎜
⎜⎜⎜⎜
⎛1 1 1 … 11 ó ó2 … óñ−1

1 ó2 ó4 … ó2(ñ−1)
1 ⋮ ⋮ ⋱ ⋮1 óñ−1 ó2(ñ−1) … ó(ñ−1)2⎠⎟

⎟⎟⎟⎟
⎞

 

with ó = `2ôµõ  the îth root of unity. 
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If applied to a quantum superposition, òë+ñ performs as: 

òë+ñ (∑�(�)|�⟩ñ−1
Ó=0

) = 1√î ∑∑`2�=Óðñ �(�)||⟩ñ−1
ð=0

ñ−1
Ó=0

 

= ∑�(̅|)||⟩ñ−1
ð=0

 

Note that  

òë+ñ(|0#⟩) = 1√î ∑|�⟩ñ−1
Ó=0
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VIII.VIII.VIII.VIII. Grover’s search algorithmGrover’s search algorithmGrover’s search algorithmGrover’s search algorithm    

Until there, quantum attacks just meant that doubling the key size was enough to make the crypto algorithms 

secure again… 

VIII.A Grover’s search problem I 

Grover’s method applies to problems for which it is hard to Qnd a solution, yet it is easy to recognize a 

solution. It is easy through a list of potential solutions to Qnd the right one, but hard to Qnd some special 

structure of the problem to speed-up search for a correct solution.   

The problem can be formulated as follows: in an unsorted database of ) items there is exactly one ,0 
satisfying an easy to verify condition 0 . Find ,0. 
A classical algorithms need on average ¬2  checks, and a quantum algorithm needs Ü(√)). Note: the speedup 

is substantial but we still cannot solve NP hard problems. 

Here is the basic idea of the algorithm: “cooking” a solution.  

VIII.A.1 Grover’s search algorithm I 

We will denote ) = 2# 

Starting state is the equally weighted superposition of all basis states, which can be obtained the following 

way: 

|0#⟩ b�→ 1√2 ∑ |,⟩
m∈{0,1}�

 

 

State |,0⟩ (,∗ in the schema) is the one with �(,0) = 1 

Then, by applying ¦. , we obtain −1 for the amplitude of the state |,0⟩. Now, the average of the overall 

amplitude is lower than 1√2� because there is a negative value among the amplitudes. 
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Next step, we apply an inversion over the average, which increases the amplitude of |,0⟩ and decreases all 

the other basis states. We do not have seen how to perform such an operation. 

 

After that, we perform these operations a proper number of times, so much so that the amplitude at the state |,0⟩ is almost 1 and the amplitude of all other states are almost 0. A measurement in such a situation produces ,0 as the classical outcome. 

VIII.B Grover’s search problem II 

ModiQed problem: given an easy to use black box k. to compute a function  

� ∶ {0,1}# → {0,1} 
Qnd ,0 such that �(,0) = 1, with % solutions, i.e. % = |{,|�(,) = 1}| 

VIII.B.1 Inversion about the average 

The inversion about the average is the unitary transformation 

ä# ∶ ∑ �=|6=⟩2�−1
==0

→ ∑ (2Ò − �=)|6=⟩2�−1
==0

 

where Ò is the average of {�=|0 ≤ F < 2#} 

This operation can be performed by the matrix  

−3#¦0#3# = ä# =
⎝⎜
⎜⎜⎜⎜
⎜⎜⎜⎜
⎜⎛−1 + 12#−1

12#−1 ⋯ 12#−112#−1 −1 + 12#−1 ⋱ 12#−1⋮ ⋮ ⋱ ⋮12#−1
12#−1 ⋯ −1 + 12#−1⎠⎟

⎟⎟⎟⎟
⎟⎟⎟⎟
⎟⎞

 

The name of the operation comes from the fact that 2Ò − , = Ò + Ò − , and therefore the new value is as 

much above (below) the average as it was initially bellow (above) the average – which is precisely the inversion 

about the average. Note that this operation can be performed without knowing ,0. 
The matrix ä# is clearly unitary and it can be shown to have the form ä# = −3#¦0#3#, where 

¦0#[F, ª] = ⎩{⎨
{⎧ 0 if F ≠ ª                    −1 if (F, ª) = (1,1)        1 if F = ª and 1 < F ≤ � 
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VIII.B.2 Presentation of Grover’s search algorithm 

We start with the state 

|6⟩ = 1√2# ∑|,⟩2�−1
m=0

 

Then, iterate ⌊4â√2#⌋ times the transformation ä#¦. . 

Finally, measure the resulting register to get ,0 and check whether �(,0) = 1. If not, repeat the procedure. 

We will show later that the above algorithm is optimal for Qnding the solution with a probability greater 

than ùS.  
NB: the fact that this the solution is true only probably comes from the fact that if we could do exactly 4â√2# 

(i.e., a non-integer number of iterations), then the solution would be perfect. See later in this lesson. 

In the case that there are % solutions, the above iteration should be repeated ⌊4â√2�c ⌋ times. 

VIII.B.3 Analysis of Grover’s search algorithm 

Denote ¸1 = {,|�(,) = 1} and ¸0 = {,|�(,) = 0}, and let the state after the ªth iteration of Grover’s iterate ä#¦. be 

∣6g⟩ = »g ∑ |,⟩
m∈ü1

+ }g ∑ |,⟩
m∈ü0

  with  »0 = }0 = 1√2# 

We know that ∣6g+1⟩ = ä#¦. ∣6g⟩, thus 

»g+1 = 2# − 2%2# »g + 2 ⋅ 2# − %2# }g 
}g+1 = 2# − 2%2# }g − 2%2# »g 

This yields to 

⎩{{⎨
{{⎧ »g = 1√% sin((2ª + 1)p)

}g = 1√2# − % cos((2ª + 1)p)   with  %2# = sin2 p 

The objective is now to Qnd such a ª which maximizes »g and minimizes }g. In our case, it means make »g as 

close to 1 as possible, which is »g þ 1√c.  
Therefore, we chose ª such that cos((2ª + 1)p) = 0 

cos((2ª + 1)p) = 0 ⇒  (2ª + 1)p = â2 + �â  with  � ∈ ℤ 

⇒  ª = â4p − 12 + �â2p   with  � ∈ ℤ 

⇒  ª = ⌈ â4p⌉ 

We have c2� = sin2 p, so  
0 ≤ sin p ≤ √ %2# 

If % is small, then p þ √ c2�, which yields Qnally to ª = Ü (√2�c ) 



Prof. Dr. Jean-Pierre Seifert Quantum Computing
 

Théo Saulus Page 53 of 56 TU Berlin, summer 2022 

VIII.B.4 Examples 

1st example: take ) = 4, with solution , = 3, and start with the state 

|G⟩ = 12 (|1⟩ + |2⟩ + |3⟩ + |4⟩) 
Therefore, 

¦. |G⟩ = 12 (|1⟩ + |2⟩ − |3⟩ + |4⟩) 
The mean is here 

G ̅ = 14(12 + 12 − 12 + 12) = 14 

 

After applying the reRection operator ä2, we get 

ä2¦. |G⟩ = 12 (|1⟩ + |2⟩ + |3⟩ + |4⟩) − 12 (|1⟩ + |2⟩ − |3⟩ + |4⟩) = |3⟩ 

 

We learn from this example that if we have the perfect queuing of states, we can get the solution with 

probability 1 exactly. The number of iterations is an integer, that’s why. 

2nd example: take ) = 9 with solution , = 6: 

ReRecting target, the mean is 727 

 

ReRecting about the mean, reRecting target, the mean is now 17243 
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ReRecting about the mean 

 

VIII.B.5 Re=ned analysis 

Theorem:  

Let � ∶ {0,1}# → {0,1} and let there be exactly % elements , ∈ {0,1}# such that �(,) = 1.  

Assume that 0 < % < 34 2# and let p0 ∈ [0, �3] be chosen such that sin2 p0 = c2� ≤ 34.  
After ⌊ �4�0⌋ iterations of the Grover iterates on the initial superposition 1√2� ∑ |,⟩m∈{0,1}� , the probability 

of Qnding a solution is at least 14. 
Proof: 

The probability of seeing a desired element is given by sin2((2ª + 1)p0) and therefore ª = − 12 + �4�0 would 

give a probability 1. 

Therefore we need only to estimate the error when − 12 + �4�0 is replaced by ⌊ �4�0⌋.  

Since ⌊ �4�0⌋ = − 12 + �4�0 + q for some |q| ≤ 12, we have 

(2 ⌊ â4p0⌋ + 1)p0 = â2 + 2qp0 

And therefore, the distance of (2⌊ �4�0⌋ + 1)p0 from �2 is |2qp0| ≤ �3. This implies that 

sin2 ((2⌊ â4p0⌋ + 1)p0) ≥ sin2 (â2 − â3) = 14 

VIII.B.6 Another view on Grover 

Let � ∶ {0,1}# → {0,1} be a mapping such that �(�) = 1 for a single � ∈ {0,1}# and let ¦. be our usual 

mapping such that for any , ∈ {0,1}#, ¦. ∶ |,⟩ → (−1).(m)|,⟩. 
Then, for any state |5⟩, it holds that  

¦. |5⟩ = |5⟩ − 2|�⟩⟨�||5⟩ 
Therefore, 

¦. = 2E − 2|�⟩⟨�| 
Thus, the operator ¦. , when acting on any state, changes the sign of the amplitude of the basis state |�⟩, 
while leaving amplitudes unchanged for the basis states orthogonal to |�⟩ 
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Let’s deQne also our usual vector  

|6⟩ = 3#|0#⟩ = 1√2# ∑ |F⟩2�−1
==0

 

and consider the new operator  

§ = 2|6⟩⟨6| − 2E 

This operator §  preserves the component of any state along |6⟩, while changing the component orthogonal 

to |6⟩. 
The, the Grover algorithm can now be deQned as an iterative application of the operator §¦.  to the resulting 

states starting with the initial state |6⟩. 
Observe that 

−§ = 2E − 2|6⟩⟨6| = 3#(2E − 2|0#⟩⟨0#|)3# 

Both operators ¦. and §  when acting on a superposition of states |�⟩ and |6⟩ produce a superposition of the 

same states.  

Indeed, since ⟨6|�⟩ = 1√2� (there is a unique solution, the probability of measuring � is 1√2�), it holds that 

¦. |�⟩ = −|�⟩, ¦. |6⟩ = |6⟩ − 2√2# |�⟩ 
§|6⟩ = |6⟩, §|�⟩ = 2√2# |6⟩ − |�⟩ 

As a consequence, a repeated application of the operator §¦. to the resulting states starting with the state |6⟩ will always result in a state that will be a superposition of states |�⟩ and |6⟩. Graphically, it means that 

we are in a two-dimensional plane. 

If we denote: 

• |�⊥⟩ a state orthogonal to |�⟩ in the subspace generated by |�⟩ and |6⟩ 
• p and L the angles such that sin p = cos L = ⟨6|�⊥⟩ = 1√2� 

Then, for large �, we will have  

p þ 1√2# 

The net e-ect of the operator §  in two dimensional plane is to 

transform any vector by its reJection with respect to the mirror line 

through the origin along |6⟩. Similarly, the net e-ect of the operator ¦. 

on any vector is its reRection with respect to the vector |�⊥⟩. 
Therefore, the net e-ect of the any application of the product §¦. of 

two operators that are two-dimensional reRections, is a rotation about 

the angle 2p. 
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Since � iterations will result in the rotation by the angle 2�p, with respect to the initial state |6⟩, and p is 
very close to 1√2�, the number of iterations needed to come to the state orthogonal to |�⊥⟩, i.e., |�⟩, should be 

approximately 

â4
√2# 

This holds because for � = �4
√2#, we have  

2�p = â2 

This explains why the solution more probable than 12, but not necessarily perfect: we may overshoot the 

perfect angle �2 depending on the original angle. The error made in Grover is exponentially small. 

VIII.B.7 Optimality of Grover’s algorithm 

Recall of the problem: given a function � ∶ {0,1}# → {0,1} mapping � bits to 1 bit, determine the value of , 

such that �(,) = 1. 

Classically we need to evaluate Ü()) values, where ) = 2#. 

Grover’s algorithm enables a search with Ü(√)) queries. It has two crucial steps: calculate the function on 

all values simultaneously, then reRect about the equal superposition state. These steps are repeated Ü(√)). 
This algorithm is in fact optimal: it is not possible to perform any better. 

NP is the class of problems that can be veriQed in polynomial time. That is, if given ó, you can verify that �(ó) = 1 eKciently – but it is hard to Qnd ó. If it were possible to achieve an exponential speedup for 

search, it would mean that a quantum computer can solve NP problems in polynomial time.  

It was however proven that it is not possible to search on a quantum computer any faster than Ü(√)), 
because NP problems are still fundamentally hard on quantum computers. 

 


