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I. INTRODUCTION (14 SEPT.)

I.A Course organisation

The course aims to illustrate how computer science
principles, technologies, methods and instruments can be
profitably used for the computational analysis, information

content increment and interpretation of biclogical data It will be highlighted as the application to biological data of the
produced by genome sequencing, gene expression engineering themes of data bases, information theory, data
measurements, proteomics and cellular metabolic flow and text mining and others can contribute to increasing
quantifications biomedical knowledge and improving health care

The course main objective is to give a systematic view of this

: ; Prerequisite:
multidisciplinary sector and to provide students with the

base knowledge and instruments required to tackle various = None; biological and biochemical concepts required to

issues in computational biology and to take advantage of the understand motivations and aims of the bioinformatics

opportunities offered by the recent bioinformatics computational methadologies presented during the

development course will be introduced in the first part of the course
Syllabus:

Seminar lectures and practices in informatics room on the following topics compose the course; in case, at the
end of the course, an external technical visit to an experimental research laboratory, or a seminar lecture by
a field expert, will take place.

- Introduction (2 hours): definitions, methodologies and motivations

- Genetic and molecular biology concepts (8 hours): organisms, cells, biological molecules and their structure,
duplication and expression of genetic information, protein synthesis, structure of genes and transcripts, hints
of protein structure, genome, transcriptome, proteome, hints of hereditary pathologies

- Techniques of biomolecular sequence analysis (6 hours): importance of biological sequence comparison,
local or global alignment of two biomolecular sequences, sequence similarity search

- Technologies for gene expression measurement and analysis (244 hours): biotechnologies for gene
expression measurement, computational methods for gene expression data analysis, data mining of gene
expression data

- Biological network analysis (2 hours): main characteristics of a biological network, mining and visualization
of complex network features, computational methods for gene network extraction and analysis

- Bio-terminologies, bio-ontologies and methodologies for their analysis (2+2 hours): functional and
phenotypic annotations of genes and proteins, controlled vocabularies for genomic and proteomic annotation,
Open Biomedical Ontologies: the Gene Ontology and other bio-ontologies, enrichment and similarity analysis
of annotations

- Genomic and proteomic databanks (2 hours): databank types and access methodologies, main databanks
and their relations, provided data and formats, search methods in databanks, integration and update of data
and information

- Ezamples of available bioinformatics tools (20 hours): main software tools available as Web applications,
Web services and freeware and open source programs

www. bioinformatics.deib.polimi.it/masseroli/BCB

+ Written test:
= Some guestions about any of the course subjects (given in

+ Lessons: Tuesday, 11,15-14, 15 online (Cisco Webex)

* Practices: lessons or practices), to be answered in free text
= Monday, 17,15-19,15 room 4.0.1 More details in “Examination procedure” and "Example of

written test questions” on course web site:

= Or (rarely) Tuesday, 17,15-19,15 room 7.1.3 S : : S ;
http://iwww.bicinformatics.deib.polimi.ittmasseroli/BCB/

* Detailed schedule: exams/BCBexamProcedure. pdf
http://www.bioinformatics.deib.polimi.itmasseroli/BCB/ http://www.bioinformatics.deib.polimi.it/masseroli/BCB/
Schedule_BCB_2021_2022.pdf exams/BCB_written_test_example_questions.pdf
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I.B Definitions

1.B.1 Bioinformatics and Computational Biology
What is Bioinformatics?

The definition of bioinformatics is not universally agreed upon. We define it as the creation and development
of advanced information and computational technologies for problems in biology, most commonly molecular
biology

Definition of Institut Pasteur:
— Bioinformatics derives knowledge from computer analysis of biological data
— Research in bioinfomatics includes method development for storage, retrieval, and analysis of the data

— Bioinformatics uses techniques and concepts from informatics, statistics, mathematics, chemistry,
biochemistry, physics and linguistics

The NIH (National Institutes of Health, US Dept. of Health and Human Services) Biomedical Information
Science and Technology Initiative Consortium definitions:

— Bioinformatics: Research, development, or application of computational tools and approaches for
expanding the use of biological, medical, behavioural or health data, including those to acquire, store,
organize, archive, analyse, or visualize such data

—  Computational Biology: The development and application of data-analytical and theoretical methods,
mathematical modelling and computational simulation techniques to the study of biological,
behavioural, and social systems

1.B.2 Systems Biology

Systems biology is the study of the interactions between the components of a
biological system, and how these interactions give rise to the function and
behaviour of that system.

As the objective is a model of all the interactions in a system, the experimental
techniques that most suit systems biology are those that are system wide.
Therefore, high-throughput techniques are used to collect quantitative data for
the construction and validation of models.

I.B.3 Biomedical Informatics

The increasing convergence of biology, medicine and genetics provides the opportunity to leverage synergies
between the three areas for the benefit of health. Biology and genetics are emerging as information sciences
while medicine is increasingly adopting information systems and informatics approaches to support healthcare
delivery.

Biomedical Informatics is viewed as the discipline that aims to bring together the domains of bioinformatics
and medical/health informatics to further the discovery of novel diagnostic and therapeutic methods.
1.B.4 Translational Bioinformatics

AMIA (American Medical Informatics Association) refers to translational bioinformatics as the development
of storage, analytic, and interpretative methods to optimize the transformation of increasingly voluminous
biomedical data into proactive, predictive, preventative, and participatory health

Translational bioinformatics includes research on the development of novel techniques for the integration of
biological and clinical data and the evolution of clinical informatics methodology to encompass biological
observations. The end product of translational bioinformatics is newly found knowledge from these integrative
efforts

http://www.amia.org/applications-informatics /translational-bioinformatics/
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I.C Methodologies

1.C.1 Information technology role

From the definitions, it is clear the important role of the Information and Communication Technologies (ICT)
in Bioinformatics and Computational Biology to:

Management (store, integrate, query, search, retrieve, ...) and analysis of data and information (knowledge)
— Development of models and algorithms
— Implementation of instruments and services (infrastructures)

— Creation of visualization tools

— Computational and systemic approach

Bioinformatics and Computational Biology are not simply another applicative domain of the ICT, but they
are disciplines born thanks to the ICT development

They are also disciplines where the relevant ICT contribution can appear only if based on a background (at
least minimum) of biological knowledge, since their goal is not only the correct and efficient execution of ICT
methods, but the answer to biological questions

In such disciplines computer science shows all its relevance in contributing to the progress of the life science
and health care knowledge

1.C.2 Interdisciplinarity
Bioinformatics and Computational Biology are collaborative, interdisciplinary, and globalized activities:

— “World”, not national, disciplines

English is the common language

Relevant results only in work groups with multiple expertise (informatics, engineering, physical,
chemical, biological, medical, social, ...)

Need of:

— Using a simple language, clear also to people with different expertise (during the exam, always define
the word that could be badly interpreted, and acronyms)

— Acquiring base knowledge of other disciplines, to be able to productively collaborate with other
expertise people

I.D Motivations

I.D.1 Human Genome Project

Modern Bioinformatics and Computational Biology were born with the DNA sequencing projects
— Sequencing of human DNA was first proposed in 1984
— The Human Genome Project (HGP) started in 1990 as part of an international collaboration

— In June 2000 the public International Human Genome Sequencing Consortium and the private
company Celera Genomics announced the completion of the first draft of the whole human DNA
sequence

— First draft sequence completed in October 2000 and published in February 2001

— The primary goal of the HGP is to provide a complete, high-quality sequence of human genomic DNA
to the research community as a freely, publicly available resource

— Additional goals include developing efficient technologies for gathering information leading to the
collection, interpretation, and informed use of that sequence

- Interesting movies on Human Genome Project: http://wuww.molecularlab.it /interactive/progetto %20genoma/index.asp
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Other specific HGP goals are:

1. DNA sequencing technology

After first DNA sequencing more DNA sequence required

Many two-fold improvements vastly improved cost effectiveness and throughput
"$100.000 Genome":

x Raw measure of human genetic variation

"$10.000 Genome":

X Sequencing of tumor genome collections

X SNP and disease-associated mutations

X Signs of natural selection within a population

"$1.000 Genome": Personal genome

2. Human DNA sequence variation:

determine and map common (and less common) variants

make the information available

develop algorithms for using this information

3. Comparative genomics:

for interpreting human genome sequence

X functions of conserved sequences

X

support experiments in model systems

4. Functional analysis of genes, coding regions, proteins, and other functional elements of the genome on a

high throughput, genome-wide basis:

©r

collection of data using these technologies to the extent that resources allow

Genome informatics:

data analysis methods: sequence analysis, gene mapping, complex trait mapping, genetic variation,
functional analysis

development of database tools

development and maintenance of databases of genomic and genetic data

6. Training and career development:

develop a cadre of new kinds of scientific specialists who can be creative at the interface of biology
and other disciplines, such as computer science, engineering, mathematics, physics, chemistry, and the
social sciences

7. Ethical, Legal and Social Implications (ELSI) of completion of the first human DNA sequence and of

human genetic variation:

how to integrate this information into clinical, nonclinical, and research settings

interaction of this information with philosophical, theological, and ethical perspectives

examine how the understanding and use of genetic information are affected by socio-economic factors
and concepts of race and ethnicity

After the publishing of the complete sequence of the human genome in 2001 start the “post-genomic era”:

The complete human DNA sequence is known

Much must still be understood:

X

X
X
X

Which are all the genes in the DNA and where they start and end?
Which are all the DNA components?
How they interact to each other in a “systemic view”?

Which is their function; how it is altered in pathologies; how to correct such alterations?
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I1.D.2 Molecular medicine

Molecular medicine is a broad field, where physical, chemical, biological, and medical techniques are used
to describe molecular structures and mechanisms, identify fundamental molecular and genetic errors of
disease, and to develop molecular interventions to correct them

The molecular medicine perspective emphasizes cellular and molecular phenomena and interventions rather
than the previous conceptual and observational focus on patients and their organs

Therefore, molecular medicine is interconnected with and develops into pharmacogenomics, which in turn
has molecular medicine as its application focus
1.D.3 Pharmacogenomic

Pharmacogenomics is the branch of pharmacology that deals with the influence of genetic variation on
drug response in patients by correlating gene expression or single nucleotide polymorphisms with a drug's
efficacy or toxicity. By doing so, pharmacogenomics aims to develop rational means to optimize drug therapy,
with respect to the patients' genotype, to ensure maximum efficacy with minimal adverse effects

Such approaches promise the advent of "personalized medicine', in which drugs and drug combinations
are optimised for each individual's unique genetic makeup

Pharmacogenomics is the whole genome application of pharmacogenetics, which examines single gene
interactions with drugs (http://www.phgfoundation.orq/tutorials/pharmacogenomics/)
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II. CONCEPTS OF GENETICS AND MOLECULAR BIOLOGY

II.A Main concepts

I1.A.1 Definitions

Genetics is the science of heredity of characters in living beings, that is the process through which specific
traits are passed on to next generations. This heredity is controlled by genes

Biology is the science of structures, functions, and life’s conditions of living beings

Molecular biology is a discipline of biology that studies living beings at the level of molecular mechanisms
that are the base of their physiology; in particular it studies interactions between macromolecules (proteins
and nucleic acids DNA and RNA)

II.A.2 Features of living beings

Living beings have 7 common traits that make them different from inorganic matter:

— Complexity in structure: organisms have complex structures (at macroscopic, cellular and
intracellular level)

— Organization: organism structures are highly ordered and functional, both at macroscopic (animals
and plants) and microscopic level (cellular and intracellular level)

— Use of energy: organisms can get energy from the environment (solar energy (plants), chemical
energy from nourishment) in order to produce work (mechanical, chemical, electrical, ...) to build and
maintain their structure

— Reproduction: organisms can reproduce themselves by generating new living beings that unalterably
continue basilar characteristics of the specie

— Development: in superior organisms, one cell can differentiate in many cells, characterized for each
type of tissue
x  Different types of cells create tridimensional ordered structures and proliferate in a controlled
way
X Growth is made possible by nutrients incoming from external environment, that are
transformed and absorbed

— Reaction to stimuli: living beings react to environmental stimuli to get the maximum advantage
with the minimum expense of energy. E.g. motion can be the reaction: to the view of a predator, to
the light direction (plants), to a climate change, ...

— Evolution: according to the majority of biologist, living beings can evolve, that means they can
transform themselves through changes in time

1I.A.3 Scientific method
Natural sciences (physics, chemistry, biology, medicine, ...) owe their actual development to the scientific
method, summarized in the following 5 steps:
— Definition of the problem: careful observation of an aspect of reality (e.g. natural phenomena,
living organisms) suggests to the scientist a question to solve

— Study of literature: before starting his personal research, the scientist analyzes scientific papers
other researchers published about the topic

— Formulation of the hypothesis: depending on literature data and personal observation, the
scientist formulates a hypothesis, as possible answer to the question

— Conduct of experiments: to verify the hypothesis (its correspondence to reality) the researcher
carry out experiments that mimic in a simplified form and in controlled conditions the real phenomena
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Experiments must be reproducible. Biologists examine the transformation or the behaviour of living beings;
usually it is not highly reproducible due to the interaction of many factors. To reach better reproducibility:

X Sample of organisms sufficiently substantial

X Only one factor (the one examined) between the influent ones must be varied in the experiment

X A control group must be compared and contrasted to the experimental one: the control sample
is identical to the experimental one unless for the factor studied

In some cases (e.g. diseases’ incidence) information is obtained by the observation of extended group of people,
reviewed by statistical analysis

If experiments are not feasible, onerous (costs, time) or numerous, an “in silico” analysis can be carried
out, to find answers or to select experiments that can give them

— Formulation of law: if the hypothesis is validated by the data, it is assumed as law; if not, another
hypothesis is required

The law consists of a proposition that state the order, or the neatness found in the phenomena
(generalization). Quantitative laws expressed with mathematical equations that allow predictions on
phenomena not observed yet. Whole sets of laws can be explained with general principles: theories.

Nowadays in biology the most important unifying idea is the evolution theory. Laws and theories are never
fixed! They must be modified or substituted if contrasting facts are observed.

1I.A .4 The cell
The biological unit of all living beings is the cell.

Organisms:
— unicellular (made up of only one cell)
— multi-cellular (made up of a variable number of cells); on average, human being have about 37.2
trillions cells
Depending on their structure the cells can be divided into:
— prokaryotes

— eukaryotes

Prokaryote cells: have a nucleus not clearly separated from the rest of cellular matter

Schematized structure of a prokaryote cell (bacterium):

a) Cell wall

b) Plasma membrane
c¢) Cytoplasm

d) Chromosome

e) Ribosome

f) Flagellum
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* Prokaryotes:
= Are unicellular organisms, the most simple and old

= They includes bacteria, the most numerous living
beings on Earth, with different shapes: a) spherical,

b) stick-shape, c) spiral-shape g ?
a® b c)
a) cocco
b) bacillus g

Iéactena. A) vibrio;
c) spirillum B) staphylococci; C) bacillus;
D) spirillum with flagella

Eukaryote cells: have well-defined structure

They are enclosed by a plasma membrane, that contains:

— Undifferentiated cellular matter (cytoplasm)
— A well-defined nucleus, enclosed by a nuclear envelope

In cytoplasm, there are various organelles enclosed by membrane, that executes accurate vital function for
the cell:

mitochondria

endoplasmic reticulum

Golgi apparatus

Schematized structure of a
typical eukaryote cell:

a) Plasma membrane

b) Cytoplasm

¢) Nuclear envelope

d) Nucleus

e) Chromosomes

f) Ribosome

g) Mitochondria

h) Endoplasmic reticulum
i) Golgi apparatus

J) Lysosome

II.A.5 Building bricks

All the cells are constituted by 4 main types of big biological molecules (macromolecules):

— proteins
— polysaccharides
— lipids

— nucleic acids
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Proteins: polymers constituted by chains of amino acids ~ AMIN0 acids are molecules constituted by:

(monomers); there are 20 different amino acids: = 1 central atom of carbon (C), linked with:
= Alanine Ala (A) = Methionine Met (M) - 1 atom of hydrogen (H)
: iysw‘re . iys Eg; g gsplaragine ;\5" Ef:}) - 1 amino group (-NH,)
= Aspartic aci sp = Proline ro
- 1 carboxylate group (-COOH

- Glutamicacid  Glu (E) = Glutamine Gin (Q) _ V‘ group ( ) ) _ _
. Phenylalanine Phe (F) - Arginine Arg (R) - 1 side-chain (R), that varies for each amino acid
. Glycine Gly (G) - Serine Ser (S) (A8, CYs; ASp; =) )
. Histidine His (H) = Threonine  Thr (T) Co
= Isoleucine lle (1) « Vali Val (V . H

3 0 aine al (V) N-terminus —— <—— C-terminus
= Lysine Lys (K) = Tryptophane Trp (W) H
« Leucine Leu (L) = Tyrosine Tyr (Y) Side-chain —— n

Amino acids (proteins) can have different functions:
—  structural (they constitute the cell’s frame)
— enzymatic (catalyze (allow) the majority of cellular reactions)
— hormonal (execute regulative functions)

— immunity (defense from other entities, mediated by the Immunoglobulines)
Polysaccharides: polymers constituted by various simple sugars (such as glucose); they include:

—  glycogen (the most important energetic reservoir in animals for instant utilization)

— amid and cellulose (the most important energetic reservoir in plants)
Lipids or fats: main constituents of cellular membrane, they represent energetic reservoir for the cell

Nucleic acids: the most big molecules in cells; they are

constituted by long sequences of monomers, the There are 2 types of nucleic acids: it T
hucleotides, formed by: , - Ribonucleic acids, or RNA, constituted by * (@&l*
= 1 molecule of sugar with 5 atoms of carbon (C) to which nucleotides with ribose as sugar PY e
are linked: ?' OH OH
. . . oll—P —0 « Deoxyribonucleic acid, or DNA, constituted ou0 cwzom
- 1 phosphate group (with 1 phosphoric acid - P), é“ by nucleotides with deoxyribose as sugar 1-‘4-
- 1 molecule containing nitrogen (N) (nitrogenous base, « DNA contains bases (nucleotides): i il
or base (B)) adenine (A), cytosine (C), guanine (G), thymine (T)
Q5 H
*'"“'su o RNAs contain uracil (U) instead of thymine
A E nucleotide
. phosphate group sequence
I nitrogenous base Nuéleotide {petimes)
(monomer) : - pC |
NH, 0
NF | N> HN | N\>
Adenine (DNARNA) Guanine (DNARNA)
o NH, 0
H;
HN)j/t N)j HN)j
O)\N O)\N o)\w
H H H
Thymine (DNA) Cytosine (DNA/RNA) Uracil (RNA)
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DNA contains all the genetic information that is necessary for the life of the host organism. DNA gets
organized in structures called chromosomes

— In prokaryotes there is only 1 chromosome

— In eukaryotes there are more than one chromosome (there are n chromosomes, with n specific to each
species; human beings have n = 23 chromosomes)

A cell can be haploid, diploid, triploid, tetraploid, ... if it contains n, 2n, 3n, 4n, .. chromosomes; most cells
are diploid.

1II.A.6 Cellular reproduction
Cells reproduce themselves through cellular division (that is regulated by own genetic information). Time
between two cellular divisions varies depending on the type of cell.

— In prokaryotes (e.g. bacteria) reproduction consists in simple binary fission (1, 2, 4, 8, ...) until nutrient
lasts

— In eukaryotes cells can reproduce themselves in 2 ways:
x asexually (like, but more complex that prokaryote binary fission)

X sexually, specific to the superior multi-cellular organisms

In sexual reproduction, the new organism originates from the union (fecundation) of:
— one female sexual cell (germinal cell, or gamete), called egg cell or ovum
— one male sexual cell (germinal cell, or gamete), called spermatozoon
Sexual cells are haploid and originate through a process called meiosis (from ancient Greek ‘meiosis’ =

reduction). In meiosis the number of chromosomes reduces from 2n to n: from 1 diploid cell, through
1 chromosomes’ duplication and 2 subsequent nucleus’ divisions, 4 haploid cells are originated.

) pareny MIEIOSIS
a

paternal
hormologue

matemnal
homologue

Prophase 1

Metaphase 1

1st cell division of meiosis |—|

Anaphase 1

Telophase 1
Prophase 2

2 daughier cells ok
) Metaphase 2

4 daughter
o cells

Two daughier cells

.—| 2ndeell division of meiosis
AR
L
o
>
©
@

Mitosis Anaphase 2 Telophase 2

In asexual reproduction, 2 cells originate from the division of an initial single cell, through a process called
mitosis. In mitosis, the number of chromosomes doubles (from 2n to 4n) before the division, which produces
2 cells with 2n chromosomes each.
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From fertilized ovum, the zygote, a new living being develops. The zygote, diploid (2n), contains the cellular
programs of the father (n) and the mother (n). From zygote all the cells of the new living being are originated:

— sexual cells, haploid, through meiosis
— somatic cells (from ancient Greek ‘soma’ = body), structural and diploid, through mitosis
Somatic cells can differentiate and specialize in determinate functions (e.g. liver cells, blood cells, ...)

Comparison between meiosis and mitosis:

MEIOSIS @ MITOSIS @

b - ——— DHAreplication B

i .
Homologous i
chramosames at the

same level on
equatorial plate

Melotic division 1

Homologous
thromosonne
line up
individually
at the
equalonal
plate

DNA replication: divisions, daughter cells, final chromosomes in each cell
Some interesting videos:
Mitosis:
—  http://www.youtube.com/watch?v=VINTK1-9QB0
—  http://www.youtube.com/watch?v=3kpR5RSJTSA
—  http://www.5min.com/Video/Learn-about-the-Mitosis-Cell-Cycle-117557481
—  Real: http://www.youtube.com/watch?v=rvOl8rRQSg
—  http://www.youtube.com/watch?v=m713i1Zk8EA0
—  http://www.youtube.com/watch?v=DD3IQknCEdc
- http://www.youtube.com/watch?v=NVfqzSKa_Bg

Meiosis: http://www.youtube.com/watch?v=D1_-mQS_FZ0

Mitosis vs. meiosis: http://biologyinmotion.com/cell_division/index.html (Interactive)
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I1.B Mendelian genetics

II.B.1 Origins

Genetics as a science was born in the early 1900, when Hugo De Vries (Nederland), Karl Correns (Germany)
and Erick Tschermak (Austria) confirmed Gregor Mendel’s inheritance transmission laws (1865):

Firstly,

He started from pure lines of sweet pea plants

He took in account alternative characteristics (e.g. smooth or rough shape seeds, green or yellow color
seeds, ...)

He crossed 1 plant with a characteristic (or trait) with another plant with the alternative trait
He grouped the offsprings into classes that differed for the characteristic examined (qualitative
analysis)

He counted individuals of each class (quantitative analysis)

He inferred that inheritance is based on “material units” identifiable by “discrete factors” (separated
factors), brought individually by germinal cells. They combine in pairs during fecundation and split
up again in subsequent generation, during formation of new gametes

11.B.2 Monohybrid cross

Mendel crossed plants (parental individuals, P) that differ for only one alternative discrete character

(monohybrid cross), e.g. green or yellow colour seeds

He obtained all equal hybrids from the first generation (F1) (uniformity of the first generation), with
only one alternative trait of P, called dominant trait (marked with a capital letter)

He crossed the F1 individuals, obtaining F2 offsprings (second generation of P) that show the other alternative
discrete character (hidden in F1), called recessive trait (marked with a lower letter)
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(V| Y ) h
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Configurazione omozigole . omozigote Configurazion@ £ ’ - SlAraiogte
# L daminante \ I‘l'_-:_',. recesivo P genetica i eterozigote \ HEraZ Fi
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Incroci
possibili

Pianta
con fiori

] B Cameti ! ) 1
@ @ == Tl prodotti @ = l@ i
R r R R
fius Incroci i .

possibili .
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R

r

P
i - r _..i
RR Rr i Rr rr
: i 2 Pianta ; % :
Qrosmﬁrmm Qﬂ)sslﬁmsst en o wrobslvmsst ”mm @blar]cl1l
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= = = . . = 5 1 3 3 3
Conngumzmne@ "9etemzigote e!emzigme@@ (.onngurazmne@ @ @ Al

genetica

Mendel

gehelica omozigote dominanti eterozigote  omozigote recesivo

Punnett’s table

hypothesized that the obtained results were caused by inheritance factors

Nowadays:

This factors are named genes and their alternative forms alleles

An hybrid, with both dominant (R) and recessive (r) alleles, is indicated with Rr and named
heterozygote

An individual with 2 alleles of only 1 type is called homozygote (RR, dominant homozygote, or rr,
recessive homozygote)

The genetic configuration of an individual, that is its allelic composition, is called genotype

The appearance of an individual, that is the way the genotype manifests itself, is called phenotype
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First Mendel’s law, or law of segregation:

If:
— each individual produces equal quantity of gametes with one or the other allele
— during fecundation, gametes combine randomly

Then, in F2 quantitative ratio between:
— dominant and recessive traits (phenotypes) is always 3:1

— dominant and recessive allelic compositions is always 1RR : 2Rr : 1rr (see Punnett’s table)

11.B.3 Dihybrid cross

Secondly, Mendel crossed individuals that differ for 2 discrete alternative characters (dihybrid cross), to
evaluate if pairs of traits are inherited separately

By crossing dominant homozygote individuals (e.g. yellow smooth seeds — YYSS) with recessive
homozygote ones (e.g. green rough seed — yyss), he obtained:

— F1 always showed heterozygote individuals YySs (yellow smooth seeds)
— F2 showed 4 classes of individuals (see Punnett’s table):

X YYSS, YYss, yySS, yyss

x Constant ratio9:3:3:1

. e | RUTATSPEMENTAL
e TECessIvG 15 semi lisci gialli
108 semi fisch verd

10 semi rugosi pialli

32 semi rugosi verd|

incroch
passibili

- @ 00008
Cob = &

omozigote elerazigoli omozigole
dominante recessivo

Punnett’s table

wameli Lo 7 1
pradotti

Results showed that pairs of characters segregate (distribute in gametes) separately one from another

Second Mendel’s law, or law of trait independent segregation: segregation of traits in dihybrid cross comes
from simple mathematical combination of two independent segregations: (3:1) * (3:1)=9:3:3:1
11.B.4 Genes and chromosomes

Where are located the genes? In 1902 Walter Sutton (USA) and Theodor Boveri (Germany) state that
genes are located on chromosomes

This statement conflicts with the second Mendel law:

— the number of traits in an organism is a lot higher than the number of chromosomes, so each
chromosome must contain more than one gene

— genes (or rather their alleles) are not always inherited independently (second law), but there is
association (linkage) between genes or groups of genes
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I1.B.5 Genes association

In 1910 Thomas H. Morgan (USA), researching on
Drosophila (fruit flies), demonstrated the association
among different genes (alleles) of a chromosome exists, but
it is not total

During meiosis, homolog chromosomes (one with male
origin, one with female one) can exchange some genetic
material ~ (crossing-over), generating  recombined
chromosomes and making genes (alleles) on recombined
parts not to be associated anymore

The point of the chromosome where the exchange and the
recombination take place is called chiasm

Video: http://www.youtube.com/watch?v=0p7Z1Pr800/ Crossing-over and recombination during meiosis

The more one gene is far from another, the more it is easy that the two genes are separated by crossing-over

For a gene pair, the percentage of recombined chromosomes in offsprings is used as a measure of the relative
distance between the two genes (1 centimorgan = 1% of recombination)

The percentage of recombination between two genes is proportional to their relative distance; chiasm prevents
other crossing-over processes nearby (interference)
I1.B.6 Sexual characters
Inheritance of genetic characters has particular importance for genes located on sexual chromosomes
In eukaryotes, sex is genetically determined by a pair of nonhomolog chromosomes (X and Y)

Generally, one sex has two identical chromosomes (XX, homogametic sex) and the other two different
chromosomes (XY, digametic sex)

In humans and in many other organisms:
— XX female sex
— XY male sex
— Traits (genes) of Y chromosome are only in male individuals

In humankind:
—  Ovum (from female individual) has 1 X chromosome
— Half of spermatozoa (from male individual) has 1 X chromosome, the other half 1 Y chromosome

— If the ovum is fecundated by a spermatozoon with a X chromosome, the new individual is a female,
otherwise

— (if it has a Y chromosome) he is a male

— Sex development is a complex process controlled by many genes; genotype (XX or XY) determines
sex only from the physical point of view

In humans, genes located on chromosomes X and Y are associated with sex
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Q femmina (XX) x maschio (XY) d'
incroci possibili

gli spermatozol possona
contenere Y

O un cromosoma X

o un cromosoma Y

le uowa possono
contenere solo
un cromaosoma X

probabilita

che nasca una femmina Q XK = 50%:;

2 che nasca un maschio d‘ XY =50%

There are also traits (not on sexual chromosomes):
— influenced by sex (e.g. baldness, more common in men)
— or limited by sex (e.g. genes for milk production, present but never expressed in men)

Notice that somatic female cells (XX) do not make double quantity (compared with male cells XY) of genes’
products of X chromosome: 1 X chromosome is genetically inactivated in female individuals

On X chromosome, around 200 genes have been found that determine various traits (e.g. sight, blood
coagulation, nervous system, smell, ...)

Transmission of characters linked to X or Y chromosome is different depending on the cross type; this fact is
relevant in some pathologies linked to genetic alterations on X or Y chromosome:

— Color blindness (due to the absence of one or more pigments in retina’s cells; incidence 8% men,
0.0064% women)

— Hemophilia (due to lack of proteins necessary to blood coagulation)

— Turner’s syndrome (due to lack of one X chromosome in female sex; it brings short height and sterility;
incidence 1:5000 women)

— Klinefelter’s syndrome (due to one extra X chromosome in XXY individuals; it brings male aspect,
small testicles and developed breast, tall height and mental deficiency; incidence 1:500-2000 men)

— Aneuploidy: anomaly in the number of chromosomes (due to errors during cellular division producing
gametes)

Transmission of sexual characters (e.g. color blindness)

Normal allele (C) that gives correct colors’ perception is dominant on the mutated one (c), they are both
on X chromosome

A cross between color-blind father (c¢Y) and normal mother (CC) gives: F1: normal son (unique normal X
chromosome: CY), or normal daughter only in phenotype (symptom-free carrier, heterozygote Cc)

A cross between color-blind mother (cc) and normal father (CY) gives: F1: normal daughter only in
phenotype (symptom-free carrier, heterozygote cC), or color-blind son (unique X altered chromosome: cY)
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" 50% < Cc normale 50% Q : Cc normale

% (portatrice) %D e (portatrice)
" _ 5 €W ‘

50% d : Cc normale 50% d : ¢Y daltonico

In a population, if there are k% male individuals with altered phenotype of X chromosome, there are basically
k%« k% = (k%) 2 female individuals with altered phenotype (e.g. K = 2% in males, 2% * 2% = 0.04% in
females)

I1.B.7 Genes’ interaction

Genes do not act independently; they can interact, generating unpredicted phenotypes or segregations that
differ from the expected ones according to the Mendel laws.

Examples:
— Incomplete dominance
— Co-dominance
— Polygenic inheritance
Not always all F1 individuals have the same dominant phenotype

In some cases, heterozygote individuals have a trait that is intermediate between the parental ones (e.g. by
crossing “four o’clock” red flowers’ plants (RR) with white flowers’ ones (rr), 100% of F1 plants with pink
flowers are obtained)

By crossing F1 individuals, in F2: 25% RR, 25% rr and 50% Rr with intermediate phenotype (e.g. pink
flowers) (incomplete dominance)

=

B r = e

25%
fiori
rossi

bianchi
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In some cases, the heterozygote shows phenotypes of both parents: no phenotype is dominant on the others
(co-dominance), e.g. AB blood group in humans:

— genotype I*T* or I*i* or I4i® generates A group
— genotype IPI® or I%i® or I%i* generates B group
— genotype i*i* or i%P® or i*i® or iPi* generates 0 group

— genotype I*IP or I*I* generate AB group

i GRUPPO [ ANTIGENI PUO PRODURRE GRUPPO SANGUIGND (ricevents) |
SANGUIGND PRESENTI SUI ANTICORPI foo— —_ e
{tlnaiore) GLOBULI ROSSL | A ; B | AR (o]
' Al TN T S Asy e i | =
A | A | anti-B O = O =
| - A
= =k ==L LSl —
B B . anti-A = O = =
I Jl : | =k = |25
A B | AB | = — &y 1
- 1 e s it T
anti-
l o [ IRERIN0: anti-B J ) @) [ O O
o: NESSLNa iIMMmuUnizzazions —: reazione di immunizzazione

0 group: universal donor / AB group: universal receiver
There are many traits that vary in a continuous way (e.g. height, skin color, ..) and not in a discrete
alternative way (as Mendel’s traits)

These traits are called quantitative (because depend on quantity), or polygenic because determined by the
expression of more than one gene

Each genotype determines a different phenotype, with slightly different phenotypes and continuous

quantitative traits (polygenic inheritance)

I1.B.8 Gene-environment interaction

A phenotype is determined not only by genes’ expression, but also by the environment where the organism
lives in. Environment can act on the same genotype, producing different phenotypes (e.g. skin pigmentation
depends on genotype, but also on exposure to UV rays)

Genes determines potentialities of some traits’ realization; these potentialities are influenced by the
interaction between genes of the same organism and interaction between the organism and its environment

phenotype = genotype + environment
Individuals with the same genotype can show different phenotype:

— in bees’ populations, a female, with the same chromosome complement of others, can become gqueen
bee only if fed with royal jelly, otherwise it becomes worker bee

—  homozygote twins that live in different places

—  Himalayan rabbits, that have white fur (unless black extremities) if living at 25° and more black fur
if living at less than 10° (due to an enzyme that contributes to black pigment, which is active only at
low temperatures, e.g. at extremities in 25° environment)

5

]
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11.B.9 Genes of populations

Mendel’s laws point out the principles of inheritance, having as object of study the single individual; are they
valid for entire populations?

It is necessary to move the focus from the single individual to Mendelian population, from genotype of single
components of population to genetic pool of examined population. Populations' genetics evaluates, through
statistical analysis, frequency of presence of different genes in a population (genetic variability of a
population)

Contrary to what Mendel laws claim, recessive traits do not disappear in a population with the passing of
time. G. Hardy e W. Weimberg in 1908 determined that, in a balanced population, frequencies of genes
and genotypes tend to remain constant in generations.

Let’s see the demonstration:

Given the distribution of paired alleles A and a in a population, we want to know their relative frequencies
in it. Each member of the population can have genotypes AA, Aa, or aa.

Examining phenotypes of the population, we can have the percentage of individuals with A (or a) phenotype.
We can not have the frequency of allele A, because it is present in dominant homozygotes (AA) and in
heterozygotes Aa and aA (the same for allele a)

Since in the total population the frequency of the sum of alleles is 100%, if frequency of A is p and of a is q:
p+q=10%=1 p=1-¢ qgq=1—0p

If alleles A and a are equally shared between male and female populations (frequency of A is p and of a is q),
in subsequent generation for the first Mendel’s law population is characterized by AA + 2Aa 4 aa ratio,
but due to conditional probability:

— individuals AA have frequency pxp = p 2
— individuals aa have frequency ¢*xq¢ = ¢ 2

— heterozygote individuals, coming from independent events Aa and aA, have frequency (p * ¢) and
(q*p), or rather Aa + aA = pg + qp = 2pq = 2Aa

So, the sum of alleles is 100%, i.e. AA + 24a + aa = (A + a)"2 =p 2 + 2pg + ¢2 = (p +
q)" 2 = 1 (Hardy-Weimberg’s law)

If population is sufficiently big and the mating is random, allelic frequencies remains constant among
generations, in F1:

— Since frequency of AA is p?, of Aa is pq, of aA is qp and of aa is ¢?,
o frequency of Ais f A = p 2 +pq/2 +qp/2 = p 2+pq
o frequency of ais f.a = ¢ 2 +pq/2 +qp/2 = q 2+ pq

— Sincep = 1—-qgandqg = 1- p,
o frequency of Ais f A =p 2 +pg =p2 + p(l—p) =p
o frequency ofais fa = ¢2 + pg =q¢2 + q(1—q) = ¢

— that means frequencies of A and a remains the same among generations; thus, this population is said
balanced (with respect to the two alleles)

Hardy-Weimberg’s law is theoretical. It is true only if there are no factors that tend to make allelic (genetic)
frequencies change. Generally, this is not verified: evolution causes a continuous process of changing in the
genetic constitution of a population.

Evolutionary factors that make genetic frequencies vary are:
— Mutation
— Natural (or artificial) selection
— Migrations
— Chance...
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Natural selection (i.e. differential reproduction of
individuals more suitable for a given environment)
is the main evolutionary factor. The more an
individual has a suitable genotype, the more it has
the possibility to survive, to reproduce and to
have an offspring. The measure of reproductive
ability of an individual (that is statistic suitability
of an individual for an environment, depending on
his/her genotype) is called fitness

Specimen of peppered moth (Biston betularia) with two phenotypes one lzght and one dark upon birch trunks,
healthy or polluted

Meiosis, mitosis, and evolution: synthetic visual summary hittp://www.youtube.com/watch?v=uH,UUv7Cr4A

II.C Molecular genetics (21 Sept.)

I1.C.1 DNA and its structure

DNA is the biggest macromolecule in the cell: it is a polymer of 4 different types of monomers, nucleotides,
made of:

— 1 molecule of sugar (deoxyribose, from which the name DeoxyriboNucleic Acid — DNA) with 5 atoms
of carbon that bond with:

- 1 phosphate group (from a molecule ot phosphorico“

acid — P)
- 1 molecule containing nitrogen (N) Oh—F =0
(1 of the 4 nitrogenous bases A, C, G, T) 61-1

0 5
'
sugar
e A
w @ rhosphate group
nucleotide Il nitrogenous base

DNA chain: long sequence of nucleotides linked by the bond between the phosphoric acid of a nucleotide
and the sugar of the subsequent nucleotide (sugar-phosphoric acid-sugar “bridge”)

This bond is called 3’-5’ phosphodiester bond, 05
where 3’ and 5’ is the ordinal number of the atom of 1"4-sugar
carbon of the sugar joining the bond z » Cchain of DNA

3
@ phosphate group

I nitrogenous base
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Ribonucleic acids
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Adenine (DNARNA) Guanine (DNARNA)
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Deoxyribonucleic acids Thymine (DNA) Cytosing (DNABNA) Uracil (RNA) Pyrimidines
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The chemical structure is mentioned but will not be the main consideration of the course, so it is not
compulsory to know the exactly by heart

In 1953, in Cambridge UK, James Watson (USA) and Francis Crick (UK) defined the exact spatial
structure of DNA, considering two types of experimental results:

1. DNA bases’ composition
In 1945-1950 E. Chargaff (US) found that in the DNA of each organism (Chargaff’s rules):

— Quantity of Adenine (A) = quantity of Thymine (T)

— Quantity of Cytosine (C) = quantity of Guanine (G)

A_C A+ T

or: 7 = & = 1 even if 5 [CG percentage| varies in different organisms

2. Diffraction spectra from X rays of pure DNA fibers’ crystals

In the same years, Rosalind Franklin (UK), with M. Wilkins, obtained the first photographs of diffraction
spectra from X rays of pure DNA fibers’ crystals, that showed a helix structure with 2 characteristic
periodicities, at 0.034 pm and at 0.0034 pm on the main molecular axis
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Watson and Crick combined information from Chargaff and Franklin, building tridimensional models of DNA
Model that mostly fitted experimental data was double helix

If temperature, acidity (pH) and humidity are the ones characteristic of living cells, DNA spontaneously
arranges itself in a structure with the following characteristics:

1. Double heliz of two polynucleotide chains that roll up together in a right-handed coil, relative to the main
molecular axis

2. Nucleotide bases are arranged in the internal part of the helix, perpendicularly to the main molecular axis;
backbone sugar-phosphate is in the external part

3. Nucleotide bases interact by weak hydrogen bonds (H):

— A and T bond with 2 H bonds
— C and G bond with 3 H bonds
(A-T and C-G are called pairs of complementary bases)
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4. H bonds also strengthen structure of the helix
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5. There are 10 pairs of bases (10 bp, base pair) for each helix turn; pairs are spaced of 0.00034 pm, so pitch
of the helix is 0.0034 num (as shown by X rays spectra); double helix has a diameter of 0.002 pm

6. The two nucleotide chains are anti-parallel, that means they have opposite directions (one from 3’ to 5,
the other from 5’ to 3)

7. Double helix has 2 grooves on the surface, one bigger than the other; in these grooves, protein interactions
occur for DNA replication and genetic transcription
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water). When humidity is low, DNA arranges itself in a more compact and wide structure (A-shape)

There are also other types of DNA =
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Phenomenon of bending is called packaging of DNA (video: http://www.youtube.com/watch?v=0StI5pniHPA)

I1.C.2 RNA and its structure

Into the cells, RNA plays a leading role in the synthesis of proteins. From the structural point of view, RNA
compared to DNA:
— Comprises ribose as sugar (instead of deoxyribose)
— Has nitrogenous base U (instead of T), that matches with A (as T)
— Always exists as single chain, where the bases interact in complex tridimensional structures, often not
wellknown yet

In some living beings without DNA, (e.g. RNA virus), RNA plays a leading role in reproduction process of
the individual (e.g. tobacco’s mosaic virus)
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In cells, there are different types of RNA, with different roles (many of them are not completely understood):
— messenger RNA (mRNA)
— ribosomal RNA (rRNA)
— transfer RNA (tRNA), about 75-95 nucleotides
— small nuclear RNA (snRNA)
— small interfering RNAs (siRNA), 20-25 nucleotides
— micro RNA (miRNA), 21-23 nucleotides
— long non-coding RNAs (long ncRNAs), >200 nucleotides
— antisense RNAs

mRNAs, rRNAs and tRNAs play leading different roles in protein synthesis, others types in its regulation

II.C.3 Genome
Genome: genetic material of an organism

Generally, it indicates DNA contained in each cell (characteristic of species and organized in n chromosomes).
Often this term refers also to RNA and proteins (that come from DNA)

Dimension and organization of genome vary depending on species. Bacterial cells (prokaryotes) have
haploid genome (n). The majority of eukaryote cells have diploid genome (2n), with different number of
chromosomes depending on species

I1.C4 Genome of viruses

Viruses are the simplest life forms
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They are not independent cells, but cellular parasites: they can reproduce themselves only inside another cell
(by using its enzymatic systems)
Virus genome:
— Composed by 1 molecule of nucleic acid (DNA or RNA)
— Enclosed in a protein shell (capsid) with different shapes (icosahedral, helical, or filamentous, head-
tail)
There are many viruses, divided into 3 classes:
— Viruses of bacteria, or bacteriophages or phages
— Viruses of plants
—  Viruses of animals
Bacteriophages: capsid with icosahedral head, containing genetic material (DNA or RNA), connected to a

hollow cylinder (tail) to which filamentous structures (spikes) are linked, which allow the hanging of the virus
on the bacterial cell’s wall

When hanged, virus injects its genetic material, from the head through the tail, inside the cell, where it
reproduces itself (video: http://www.youtube.com/watch?v=gU8Xeql Tyts)
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Viruses of eukaryote cells:

— More numerous, both for animals and plants (for plants less important than macro-parasites)

— Capsid mainly icosahedral or filamentous (sometimes coated with lipid membrane coming from
infected cell after the leakage of viral particles)

— Genetic material (DNA or RNA) is variable in structure (single or double helix, linear or circular,
segmented, or complete)

— The majority of plants’ virus are RNA virus
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Exocytosis of a new virus from an infected cell. HIV virus (Human Immunodeficiency Virus) (red) exits from an
infected lymphocyte: TEM photograph in false colour

Many viruses can include their genome in the host cell, determining dramatic changes (morphological and
physiological) in the life of the infected cell (can cause cancer)

Cellular transformation: phenomena coming from integration of virus in host cell’s DNA

Optical microphotograph of bone marrow tumor (myeloma): tumoral cells (purple) replaced the majority of healthy
tissue, cells remaining (pink) are dying
Retrovirus (e.g. HIV [Human Immunodeficiency Virus])
— Contains 1 or 2 molecules of RNA

— Thanks to the enzyme reverse transcriptase, firstly RNA is changed in single chain DNA (intermediate
form), secondly transformed in double helix by another enzyme active in cell nucleus (DNA
polymerase); in this form, genome of virus can integrate in the host cell’s genome and reproduce itself
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I1.C.5 Bacterial genome

nucleo

Bacterial cells (prokaryotes) do not have a defined nucleus, but a compact structure (nucleoid) made of 1
molecule of DNA (usually circular) of about 1 mm (bacterial cells is about 1 pm!!)

— Exact structure of bacterial nucleoid is not clear, but it seems to have packaging with numerous folds

(super-coiling)

— Along bacterial DNA there are 2’000-2’500 genes in continuous sequence (without interruptions)
In many bacteria, in addition to proper genome, there are also small circular molecules of DNA: plasmids,
which:

— Give to the cell advantageous characteristics

— Can integrate in cellular genome and detach themselves bringing a variable genetic mix with them

There are various types of plasmids, among which:
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— R plasmid (R = resistance): determines cell’s resistance to cations of heavy metals, or to many
antibiotics -> difficulties in treatment of bacterial infections. If there is an R plasmid, in environments
rich in antibiotic, resistance-genes are activated (not activated in environment poor in antibiotic to
save energy)

— Degradation plasmids: allow the bacterium to metabolize stable chemical compounds (oil residuals,
pesticides, ...) -> used for polluted areas’ recovery
— Fertility factor (or F factor): cells containing it are called male (F+), others female (F-)
o Through sex pilus (cylindrical structure in cellular wall), F+ cells can transfer to F- cells a
copy of F plasmid (conjugation), changing F- in F+
o Conjugation allows “horizontal transfer” of genetic material
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I1.C.6 Genome of eukaryotes

Nucleus in eukaryote cells is more complex than in prokaryotes. It contains different linear molecules of
DNA, each of which is contained in a chromosome.

Number of chromosomes is not proportional to dimension of genome:

— beer yeast (fungus saccharomyces cerevisiae) has genome of about 20.000 Kb (kilobases) subdivided
into 16 chromosomes

—  human DNA has 3.000.000 Kb and is subdivided into 23 chromosomes.

Chromosomes are constituted by chromatin (50% of DNA, 50% of proteins and a little part of RNA).
Proteins more strictly linked to DNA are histones (H1, H2A, H2B, H3, H4)

Chromatin has structure similar to a necklace: central filament with spherical particles (nucleosomes) of
around 10 pm-diameter. Each nucleosome is about 50-70 bp (linker) from the subsequent one.

DNA rolling on nucleosome partially explains how DNA is packaged in chromosomes
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During a particular phase of cellular division (metaphase) chromosomes assume the X shape, with 2 linear
elements (chromatids) connected in one point called centromere, that divides each chromatid in 2 p arms
(short arm) and 2 g arms (long arm)

Relative position of centromere, length of chromatids and dimension of chromosomes clinically identify
different chromosomes (that constitutes karyotype of the organism). At the extremities of chromatids there
are telomeres to stabilise the end part (from, Ancient Greek, “thin tip”)
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With artificial staining, areas of chromosomes rich in A and T bases become dark-colored,
areas rich in G and C bases remains pale, generating a striped arrangement (bands)

Each band has specific nomenclature (e.g. 6p21.3) that indicates its position, like on a map,
specifying:
— chromosome
— arm .
— region ’
— band
— sub-band

E.g., 6p21.3 indicates:
—  6: number of chromosome (chromosome 6)
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— p: shortest arm of chromosome

— 2: group of bands (region) visible on the arm starting from centromere

— 1: band inside the group, counting from centromere to telomere

— 3: sub-band, a thin band visible inside the thicker one, counted from centromere

That means, position 6p21.3, which indicates third sub-band in the first visible band on the second group
localized on the short arm of chromosome 6 (http://homepages.uel.ac.uk/V.K.Sieber/human.htm)

Not all genetic material of eukaryotes is in the nucleus. A small fraction of circular DNA is in cellular
organelles: chloroplasts (in vegetal cells, delegated to photosynthesis) and mitochondria (produce chemical
energy for the cell)

Ezxtra-nuclear genes of chloroplasts and mitochondria, being in cytoplasm, are transmitted to the offspring
just by the ovum (that has more cytoplasm than the spermatozoon), leading to a maternal inheritance, not
mendelian

I1.C.7 Duplication of genetic information

To guarantee transmission of genetic information towards offspring, before cellular duplication, DNA is copied
(duplication, or replication of DNA)

Same process in eukaryotes and prokaryotes. DNA molecule replicates according to a semi-conservative model:
each daughter molecule has 1 strand of DNA of the mother molecule and 1 of new synthesis

NA prima secanda
pnrr-n!;:lo Eenerazione generazione

Model of semi-conservative duplication comprises:
“Zip” opening of the double helix
—  Ezxposition of single bases on the two strands that act as mold

—  Pairing of bases between free nucleotides in the cell and the complementary ones in the mold
(hydrogen bond)

— Nucleotides of paired bases bond to create new strand
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Finally, 2 double helixes, both consisting in:
— 1 parental helix

— 1 new synthesized helix
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Electronic microscope

Area where double helix opens, and synthesis starts is called replication _ iid .

fork (for its shape) b )

Not concurrent duplication along all the DNA molecule, but just in a
specific position at a time, starting from the origin of duplication, origine della replicazione
following determined sequence:

1. Localized opening of the double helix by specific enzymes

2. Copying through pairing of bases and polymerization of 3
nucleotides thanks to DNA polymerase (III and I) enzymes,
from 5’ to 3’ direction on both DNA strands

On 5’ to 3’ strand (leading strand) continuous copying

On 3’ to 5’ strand (lagging strand) copying from 5’ to 3’

~ 7~
forche replicative

must occur in restricted areas (okasaki fragments), after
linked together by DN A ligase enzyme

Leading strand
(continous replication)

3. Re-closing of double helix by many specific enzymes

Video DNA replication: http://www.youtube.com/watch?v=teV622rm2P0 Lagging strand f

(okazaki fragments) ©

II.C.8 Gene structure
Sequence of 3 bases (triplet) = codon

* In prokaryotes:

gene
| ‘
\

promoter \ :
(regulatory start codon stop codon
nucleotide sequence)

+ In eukaryotes:

open reading frame (ORF)
5* upstream ﬁ ; | downstream 2’
S introns s \

Promoter & transcription \
JSactor binding sifes start codon (coding stop coden
(regulatory nucleotide sequences) nucleotide sequences)

Human genome consists of about 3 billion bases (3.000 Mb), but only 22.000-25.000 genes encoding proteins.
Coding area comprises about 90 Mb (only 3% of genome)
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More than 50% of genome is constituted by repeated sequences:

— Tandem repeats (10-15% DNA, from 1 to millions of bp): repetitions are adjacent (e.g.
ATTCGATTCGATTCG)

— Interspersed repeats (35-40% DNA, from 100 to 10’000 bp): repetitions are scattered along DNA

Many sequences are repeated differently in different individuals

11.C.9 Expression of genetic information

Term genetic expression [Crick 1958] indicates the biological process that transfers genetic information
from DNA to RNA to protein (central dogma of Molecular Biology)

Information is transferred one-way:
— From DNA to RNA: transcription

— From transcribed RNA to protein: translation

lrascrizione traduzione

retro-trascrizione . T - !
Always verified even if retrovirus can transfer information from RNA to DNA

I1.C.10 Transcription

In transcription, DNA information leads the synthesis of RNA molecule from 5’ to 3. Only I helix of DNA
is used to synthesize one RNA (mold helix)

Synthesized RNA molecule has the same sequence of the stretch of the other DNA strand (coding helix), but
with base U (uracil) instead of base T (thymine)

Mold and coding helixes are not the same for all types of RNA
Synthesis is catalyzed by enzyme RNA polymerase
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RNA polymerase is different in prokaryotes and eukaryotes

a) Prokaryotes
In prokaryotes RNA polymerase:
— Constituted by 5 subunit (2 o = o2; 1 g; 1 p’; and 1 o)
— Transcribes all classes of cell’s RNA (mRNA, rRNA, tRNA, ..)
In prokaryotes, transcription comprises 3 different phases:

1. Starting transcription:
— RNA polymerase enzyme bonds (with its o subunit) with gene’s promoter
— subunit ¢ detaches and transcription starts

2. Polymerization of polynucleotide RNA (elongation):
— Enzyme continues synthesis of RNA up to stop zone of gene (termination)

Théo Saulus Page 36 of 204 Politecnico di Milano, winter 2021



Prof. Marco Masseroli Bioinformatics and Computational Biology

3. Detaching of synthesized RNA and end of transcription:
— enzyme detaches from DNA and RNA remains free (video: http://www.youtube.com/watch?v=toCc6ZUSDIA)
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b) Eukaryotes

In eukaryotes, transcription is a more complex process:

— 3 different types of RNA polymerase (RNA polymerase I, RNA polymerase II, RNA polymerase
III). Each type recognizes and transcribes a different genes’ set (genes for mRNA, genes for rRNA,

genes for tRNA, ...)
gene périlAM

{ | 1 . |

v

e e e e T B LR
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— Many other proteins are necessary (transcription factors), specific for each polymerase, that
lead specific RNA polymerase linkage and gene’s transcription. They bond in particular areas of
DNA (sites for transcriptional factors’ bond) when they have favourable tridimensional access
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Video: http://www.youtube.com/watch?v=WsofH466lqk
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RNA polymerase synthesizes RNA in continuous way (cannot skip a
part of mold chain of DNA)

In eukaryotes, genes (composed of introns and exons) are fully
transcribed, producing a primary transcription (pre-RNA)

esone 1

Complex molecular processes (splicing), characteristic of eukaryotes, Pl e
m

remove intron sequences from pre-RNA, producing mature-RNA, ° o o taxchin
that migrates through nuclear envelope in cytoplasm, where it is .. NNJGUNN.. ..NNA U,NN
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sp icing
Different types of splicing can be observed (alternative splicing) B esone 1 W osone2 y
exons (coding nucleotide sequences) ' T
_- : - -_ Gene (DNA) esce dal nucleo
introns

transcription

Transcript (mRNA)
splicing 1

N Alternative splicings
splicing2

splicing 3 “ .
1 gene => more than 1 transcript

In a gene with alternative splicing, the majority of exons is always included in final mRNA

4 different types of alternative splicing can occur, each of them generates different final transcripts:
— cassette exons: full exons transcribed only in some cases

— isoforms of introns/exons: boundaries of introns and/or exons can be different, with
clipping/extension

— introns retention: introns can be contained in final transcript

— mutually exclusive exons: different exons can be included in different final transcripts
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Splicing is a not well-known process. In some cases, molecular compleres comprising small RNA molecules
and proteins (SNRNP — Small Nuclear RiboNucleoProtein) cut:

— firstly in 5’ end of intron by dinucleotide GU
— secondly in 3’ end by dinucleotide AG
Finally, exons (become adjacent due to removal of intron) link together

There are some introns in not-mRNA genes (e.g. for rRNA) that follow GU-AG rule without using SNRNP;
remove autonomously introns (auto-splicing); these RNA are called riboenzyme
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After splicing, the process of transformation of premRNA to mature-RNA is completed stabilizing mRNA
(constituted by only exons) by adding:

— at initial extremity a “hat” of 7-MethylGuanine
— at final extremity a “tail” of Adenines (poly-A tail)

In this phase complex phenomena can occur, that bring degradation of mRNA by preventing subsequent
translation and gene’s expression.

Mature-mRNA exits from nucleus, through nuclear envelope, and move into cytoplasm, where its translation
occurs

I1.C.11 Different types of RNA
Ribosomal RNA (rRNA):

—  Structural and functional components of ribosomes, big cellular organelles with ovoid shape (in
eukaryotes and prokaryotes) where the synthesis of proteins occurs

Transfer RNA (tRNA):
— Small molecules of nucleic acid (75-95 nucleotides)

—  Function: transport of amino acids (used in proteins’ synthesis) to molecules of RNA bonded to
ribosomes

— tRNA has “cloverleaf” structure, with stretches paired in double helix alternated to stretches without
bases’ pairing (loops)

o Acceptor stem, (with extremity 3’) where a particular amino acid can link

o Anticodon area, consisting of a sequence of 3 bases complementary to codon of mRNA to
translate (during translation, these parts get paired)
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Messenger RNA (mRNA):
— mRNA produced during transcription, decides amino acids sequences of codified protein
— DMolecules intermediate between genes and proteins
— In prokaryotes, mRNA are translated immediately after transcription

— In eukaryotes, are subjected to numerous modifications, among which splicing before translation

rRNA, tRNA and mRNA produced in transcription participate in translation

I1.C.12 Genetic code

Genetic code: group of rules defining how the information of nucleotides’ sequence in mRNA (4 bases A,
G, C, U) is translated in amino acids’ sequence of the codified protein (20 amino acids)

It is “universal”: it is valid for almost all cells (not for mitochondrial genes of some organisms)
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Discovered in 1964 with a test that demonstrates IL CODICE GENETICO
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— Each triplet can codify only one of 20 amino acids
Almost all amino acids codified by more than 1 triplet

Some “instrumental” triplets:
— AUG codifies Met (unique codon) and indicates beginning of message (“start” triplet)
- UAA, UAG, UGA (“stop” triplets) do not codify any amino acid, but the end of message (gene)

Genetic code based on triplets

Splicing and mostly alternative splicing can alter reading of triplet inside open reading frame (ORF). In
same space, different concurrent encoding can occur (encoding compression)

Some alternative transcripts are tissue-specific, that means they are expressed only in one specific type of cell
(e.g. muscular, or nervous, or ...)

Mechanisms of genetic code and alternative splicing allow encoding and production of many proteins with
different functions from the same DNA (main cause of error of estimating 100K genes instead of 25-30K)

I1.C.13 Translation

Translation is a complex process involving many cellular
components, among which ribosomes (rRNA), mRNA,
tRNA

© amino acid

tRNAs (adapters) are junctions between nucleotides of

mRNA and amino acids of protein:

1ANA

— Anticodon area bonds to codon (e.g. UUU) on
mRNA that codifies a specific amino acid (Phe)

Trarsiafion
— In extremity 3’ of tRNA, only that amino acid
(Phe) bonds specifically and with covalent bond

Same translation in prokaryotes and eukaryotes; it has
3 phases (http://www.youtube.com/watch?v=5bLEDd-
PSTQ)

1. Start:

— Ribosome bonds to mRNA by starting triplet
(AUG)

— Identification of mRNA’s AUG triplet by complementary specific tRNA triplet (anticodon)
— Bond of tRNA that brings amino acid corresponding to AUG triplet (Met)

2. Synthesis:
—  Process goes on

— Ribosome moves along mRNA
— Only 1 triplet available at a time for bonding to specific tRNA
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— Amino acids brought by tRNA are near

—  When ribosome moves, a peptide bond is created between last amino acid transported by tRNA
and previously transported one (last of forming peptide)

— Protein chain extends due to ribosome moving

3. End:

—  When ribosome reaches a stop triplet (UAA, UAG, UGA):

— Detaches from mRNA
— Sets protein chain free
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4. attacco del secondo t_'R.H.ﬁ_
Each ribosome builds only 1 protein at a time
In bacteria (prokaryotes), requiring synthesis of many copies of the same protein in short time (some minutes):

—  More than one ribosome (polyribosomes) translate concurrently the same mRNA (moving in the
same synthesis direction one after the other)

— Ribosomes can start translation of mRNA before its synthesis is completed (no splicing phenomena
and no membrane-separated nucleus)

— In bacteria transcription and translation are paired
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Summarizing video: http://www.youtube.com/watch?v=4PKjF70umYo
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Functional effect
11.C.14 Control of genetic expression

Genes of a cell codify biological information

Not all genes are always necessary for the life of a cell

Only constituent genes (codifying enzymes of basal metabolism, necessary for the life of the cell) are always
expressed; other genes expressed when necessary

Expression of genes is controlled by cellular needs: environment conditions and functions to execute; e.g.:

Bacterium Escherichia coli (E. coli), living in human intestine and taking energy from various sugars,

if glucose is available (easily usable), adjusts its genes by producing only enzymes for glucose, “putting
out” genes that codify enzymes for other types of sugars

— In plant cells, genes of photosynthesis activated by sunlight
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In multi-cellular organisms:

—  Environment of a cell is the organism itself: single cells answer to stimuli (substances, e.g. hormones)
produced by other cells of the organism

— In addition, there is a mechanism called “differential regulation” that allows one cell to divide in
many specialized cells (all with the same DNA)

o In humans, ~250 types of cells with different morphology and function (e.g. lymphocytes,
myocytes, osteocytes, ...)

o Variety genetically established very early during growth of zygote (not “reversible”); only stem
cells can differentiate in specialized cells

Genetic regulation in bacteria: Knowledge from Frangois Jacob and Jaques Monod research (1960-64, France)
on use of lactose in Escherichia coli (bacteria); Nobel prize in 1965 for proposed model of regulation
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Lactose is a disaccharide (sugar of 2 monomers, glucose and galactose) that can be utilized when divided into
the 2 components inside the cell

Splitting of lactose is realized by 3 enzymes codified by 3 genes:
lacZ — [ — galactosidase
lacY — lactose — permease
lacA — lactose — transacetylase

In default of lactose, in the cell ~5 molecules of each enzyme. If lactose is the only source of energy, synthesis
of enzymes is rapidly stimulated (éinducible enzymes): in short time ~5.000 molecules

Genes lacZ, lacY and lacA that determine structure of 3 enzymes (structural genes) are consecutive on
bacterial chromosome and transcribed in the same mRNA

Before the 3 genes there is gene lacl that regulates (down) them: its elimination brings continuous synthesis
of 3 the enzymes. lacl codifies protein (repressor) that bonds to an area on chromosome called operator
(0), between promoter (p) of 3 genes and the first of them (lacZ)

The whole of p, o, lacZ, lacY and lacA is called lac operon (operon = group of genes under common control)
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Mechanism of regulation of lactose operon:

— In default of lactose, repressor bonded to operator prevents RNA polymerase transcription of 3
structural genes

— Iflactose is present, it bonds to repressor, changes its 3D conformation preventing its bond to operator.
Repressor detaches from DNA allowing transcription of operon genes (lacZ, lacY and lacA) and
synthesis of the 3 enzymes for lactose splitting

—  When lactose is totally consumed, repressor bonds again to operator and synthesis of the 3 enzymes
stops
Video (lac operon):
http://www.youtube.com/watch?v=0Bwtrdl1zvkEENR=1
http:/ /www.youtube.com/watch?v=aFtuaEe0C-1
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Genetic regulation in superior organisms

— Main mechanisms are similar to bacterial ones, but regulation is more complex

— Genetic expression regulated by proteins (transcription factors) that bond DNA sites before gene
(Transcription Factor Binding Sites) and can allow or stop bond of RNA polymerase to promoter
of gene

— Example of complexity in regulation is regulation of the protein (metallothionein) that protects cells
from toxic effect of metals free in the environment (e.g. cadmium)

o Small quantities of metallothionein are always present in the cell
o Increasing of its synthesis if heavy metals are present

Regulation of metallothionein

— Gene of metallothionein is transcribed by RNA polymerase 11
— Many traits of DNA before gene are involved in its expression:
o Binding site of polymerase

o Sequences (enhancers) that act allowing genetic transcription. Probably control tissue-
specific expression of gene

— In addition to zones with “continuing” influence, other zones act to answer to specific stimuli (from
inside or outside the cell)

— For metallothionein such zones (elements of response to metals) modulate transcription based
on metals’ concentration

— With high metals’ concentration, these DNA sites are occupied by regulatory proteins (transcription
factors) that activate RNA polymerase II: gene is “on” and much metallothionein is synthesized
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—  When metallothionein reduces metals’ concentration: regulatory proteins detach from DNA, gene is

“Oﬁ‘”

Transcription factors have leading role in regulation: they have
structure (or part of it) that let them enter in DNA grooves
and interact with nucleotide bases (DNA binding proteins).
Their more common structures are helix-turn-helix and zinc-

finger

Zinc-finger video:
http://www.youtube.com/watch?v=GRL_rdB30GY

II.D Molecular genetics II (28 Sept.)

zinc-finger

I1.D.1 Proteins

helix-turn-helix

Proteins: macro-polymers constituted by linking of amino acids (from 3 to various hundreds); there are 20

amino acids:

= Alanine Ala (A) = Methionine  Met (M)
« Cysteine Cys (C) = Asparagine Asn (N)
» Asparticacid  Asp (D) = Proline Pro (P)

« Glutamicacid Glu (E) = Glutamine GIn (Q)
- Phenylalanine Phe (F) = Arginine Arg (R)

= Glycine Gly (G) = Serine Ser (S)
= Histidine His (H) = Threonine Thr (T)
= Isoleucine lle (1) = Valine Val (V)
= Lysine Lys (K) = Tryptophane Trp (W'
« Leucine Leu (L) = Tyrosine Tyr (Y)

Amino acids are molecules containing 1 central atom of carbon, bonded with:

— 1 atom of hydrogen (H)

— 1 amine group (-NH2)
— 1 carboxylic acid group (-COOH)
— 1 side chain (R), that varies depending on the amino acid (Ala, Cys, Asp, ...)

N-terminus —— «—— C-terminus

Side chain -

Side chain of each amino acid determines chemical properties, making it:

— hydrophobic

— polar

— acid

Théo Saulus

Aliphatic Small

Aromatic

Hydrophobic " Positive
Charged

Venn's diagram of amino acids’ properties (http://www.russelllab.org/aas/aas.html)
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Peptide (from Ancient Greek “small digestible”) is a short polymer constituted by the linkage of amino acids
bonded with peptide bonds

Peptide bond: bond between N-terminus of an amino-acid and C-terminus of another one. It is planar and
rigid

(Poly)peptides have 1 free N-terminus (at the beginning) and 1 free C-terminus (at the end)

Video: http://www.youtube.com/watch?v=va0DNJId CM

Amino acid (1) H Amino acid (2) H

Peptide bond

H
1
-

Dipeptide

Proteins are polypeptide chains. Polypeptide contains from 3 to various hundreds of amino acids
Polypeptide chain is long sequence of rigid and planar peptide groups

— 3D conformation of polypeptide is determined by torsion angles around Cao — N (@) and Ca — C (¥)
bonds of each amino acid

—  Only some values of @ and ¥ are possible, depending on side chain of amino acid

Peptide bond

Proteins have different functions, ultimate for all organisms:
— energetic
— immune
— structural of support (constitute backbone of cell)
— of transport (of oxygen, metals, lipids)
— of identification of genetic identity
— enzymatic (catalyse, that means allow the majority of cellular reactions)
— hormonal (lead regulative functions and transmit signals within the organism)
— contractile

11.D.2 Structure of proteins

Function executed by protein depends on properties of protein, determined by:
— Properties of components (amino acids)
— Mainly of 3D structure adopted by the protein

Structure of protein is structured in 4 related levels:
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—  Primary structure: sequence of amino acids. E.g., AFYYWVTNMACDHIRSSWAA

— Secondary structure: local 3D conformation with regular and repetitive bonding of polypeptide
chain in substructures with well-defined and fixed geometric structures:

o spiral (a-helix): pitch 0.54 nm; 3.6 residuals per turn; hydrogen bonds inside polypeptide chain

o plane (B-strand, or B-sheet): in parallel or anti-parallel shape depending on direction of
polypeptide chain, stabilized by hydrogen bonds between adjoining parts of the chain

o loops: linkages between a-helix and [-strand (often they can rapidly change their direction);
averagely in protein 40% loops and 60% a-helix and 3-strand

- helix 3ghelix  pihelix

Hydrogen bonds in a-helix .& :. ﬁ
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Video of a a-helix: http://www.youtube.com/watch?v=eUS6CEn4GSA
Video of a f-helix: http://www.youtube.com/watch?v=wM2LWCTWIrE
— Tertiary structure: 3D arrangement of secondary structure elements in the environment

o Stabilized by hydrogen bonds, disulphide bonds, Van der Waals forces and hydrophobic
interactions

o Assumed shape is the one with lower free energy
o Mainly globular or fibrous

o Defines properties and function of protein
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V-dew Chemical bonds [hide]

Sigma bonds: Jc-2e (bent bond) - 3c-4e (Hydrogen bond, Dihydrogen bond, Agesticinteraction) - 4c-2e

p2ps

Covalent bonds  Pi bonds; w backbonding » Conjugation - Hyperconjugation - aromalicity - Ketal aromaticity
& Antibonding  Deltabond: Cuadruple bond - Quintuple bond - Sextuple bond

o Coordinate covalent bond - Haplicty
Jonic bonds  Cation-piinteraction - Saltbridge
Wetaliic bonds  Matal aromaticity
Hydrogenbond  Dihydrogen band - Dihydrogen comple. Low-hamier hydrogen bond- Symmetrichydrogen bond « Hydraphila
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Note: the weakest strong bonds are nof necessarly sironger than the strongest weak bonds
Types of chemical bonds and their strength
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Protein domain: part of sequence and protein structure that can exist, work, and evolve independently of
the remainder of protein chain. Each domain has stable 3D structure and folds always in the same way,
independently of environment

It has length of about 25 to 500 amino acids (among the shortest ones is the zinc finger, ordinary in DNA
binding proteins, stabilized by ionic or disulfide bonds, http://www.youtube.com/watch?v=GRL__rdB30GY)

It can be present in proteins evolutionary-related. Often it corresponds to a functional unit, e.g. EF hand
domain of calcium bond. Many proteins comprise more than one domain

The protein Calmodulin with Calcium binding domain

— calcium: blue

— alpha-Helices: orange

— beta-sheets: green
Clearly visible the helix-turn(sheet)-helix structure of four
Ca**-binding sites
Picture from protein 1CLL in Protein Data Base (PDB)
[http://www.resb.org/pdb/]

— Quaternary structure: spatial organization of multi-subunit complexes (two or more polypeptides
with defined tertiary structure, linked in specific way by noncovalent weak bonds, such as hydrogen
bonds, Van der Waals forces)

o phosphorylase (4 sub-units)

o hemoglobin, has the function to carry oxygen and iron in blood (2 sub-units)

Sub-units «a (red) and S (blue) of human hemoglobin: in green, iron-containing heme groups

LSm Hig protein (LSm is a family of RNA-binding proteins) with hexamer torus

Orange carotenoid protein from Arthrospira Maxima
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Ribbon representations of two orthogonal views of the DBP-actin complex
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Primary structure highly determines tertiary one. From amino acids’ sequence it is possible to obtain “tertiary
structure’s  predictions” (i.e., folding) with specific software (there is also experimental game
http://fold.it /portal /)

3D conformation is vital for biological activity of protein. Denatured protein (it has lost its tertiary
structure, even if it maintains its primary one); does not execute its function, unless tertiary structure is
restored

Two proteins are called isoform if they differ for little details, due to alternative splicing or to polymorphisms
(SNPs)

I1.D.3 Genetic mutations

During duplication of DNA it is possible to have variation in the sequence of nucleotide bases (mutations)
that are transmitted to offspring (mutants)

— Generally rare (1:10K-1M individuals)
— Mainly spontaneous and accidental in all organisms
—  Can generate individuals with new characteristics

Biological phenomenon vital for evolution (increases genetic variability of populations)

Can also be pathogenic:
— Direct cause of abnormal phenotype
— Increased susceptibility to a pathology

Mutations can be lethal for single individual:
— All organisms have various cellular mechanisms to fix possible damages to DNA

— Low % of codifying DNA on total DNA decreases probability of mutation in codifying areas
(potentially lethal)

Non-lethal mutations are transmitted to offspring, introducing between individuals of a species many little
and big differences in DNA sequence

— Are called polymorphisms [nucleotide, or of DNA] (or allelic variants) when frequency in population
is greater than 0.01%

— Some genes (e.g. HLA) are very polymorphic, and alleles of different individuals can have very different
sequence

In an individual, the majority of mutations is inherited, since percentage of new mutations is low
Genome of an individual is unique. Above all, tandem repetitions of stretches of DNA sequence. Genome
of eukaryotes contains many stretches (~50%) of short repeated sequences

In some points of DNA, number of these repeats is highly wariable among individuals and within the
chromosome pairs of an individual (heterozygosity)

To evaluate variation number in some DNA points allows identification of an individual with good reliability
(forensic identification)
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Single Nucleotide Polymorphism, or SNP ("snip"), is the variation of 1 single nucleotide in an individual’s
DNA sequence (e.g. AAGGTTA — ATGGTTA)

Averagely, frequency of SNPs in human DNA > 1%. In humans, SNPs mainly out of codifying region (only
3-5% of human DNA codifies proteins)

SNPs in codifying regions have more chance of altering biological functionality. Change in sequence of bases
can determine different encoding of amino acids, with possible different biological meaning

— CCU — Pro and CCC — Pro
- AAG — Lys and GAG — Glu

Video: http://www.youtube.com/watch?v=kpOesidDr-c

SNPs (groups of) are likely to be good biological markers

Problem: very big number of SNPs (variables). It would be necessary a huge number of cases (individuals,
that means observations) for a statistically relevant association

Often near SNPs appear together in different individuals. Haplotypes: group of SNPs always present together

Many common human pathologies are caused not by a single genetic variation, but by complex interactions
among genes, environment, and lifestyles (genetic predisposition and non-genetic factors)

1I.D.4 Genetic susceptibility

Various types of epidemiological studies are used for evaluating genetic susceptibility to a pathology
— Linkage and gene-pathology association (http://www.phgfoundation.org/tutorials/variantsDisease/)
—  “Twin” and “adoption” (http://www.phgfoundation.org/tutorials/twinAdoption/)

It is useful to define the penetrance of a pathology, both at individual and population levels
(http://www.phgfoundation.org/tutorials/penetrance/)

For each study and genetic test realized, it is important to check analytic and clinical validity, clinical

utility, ethical, legal and social implications (http://www.phgfoundation.org/tutorials/acce/)

Studies of linkage and of association: they have the goal of identifying differences in SNPs patterns
between a group of healthy subjects and a group of pathological individuals, pointing out which pattern is
more probably associated with the gene responsible for a pathology (class discovery)

This pattern can then be utilized for genetic screening of the pathology (class prediction)
Genetic factors influence the answer to pharmacological therapy; analysis of SNPs can help understanding why
Genetic tests can indicate if a drug can have good action on an individual, or if it possible to have bad
reaction (personalized medicine)

I1.D.5 Types of genetic mutations

3 classes of mutations (depending on type of change):
— Genetic: alter gene’s structure; also change in a single pair of bases (SNP)
—  Chromosomal: alter chromosomal structure

—  Genomic: alter number of chromosomes, characteristic of the species including mutant
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a) Genetic mutations A~1- 1
Genetic mutations can derive from different alterations: E:Eﬂ :r":;
— Substitution of a base with another in the nucleotide sequence ‘ .!;\of‘e A—T ':_g
— Imsertion of one base in nucleotide sequence Eoﬁ"y E:é [E_—G'
— Deletion of one base in nucleotide sequence ’::1 I;?
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Substitution for pairing error

Mutation can be effective or not on phenotype:
— mneutral (or silent) if it brings a new codon codifying the same amino acid
— missense if it brings a new triplet codifying a different amino-acid

Different amino acid in produced protein can have effect (more or less strong, or none) on phenotype,

depending on the role of the amino acid in the structure/function of the protein

If the amino acid has important role, but protein not essential for life, cell survives; otherwise mutation is
lethal. There are also useful mutations for the cell (e.g. mutant bacteria resistant to antibiotics)

b) Chromosomal mutations A j
3
Chromosomal mutations: in chromosomal structure ,’:'. (

compared to normal karyotype

changes

()

Easily detectable with optical microscope in dividing cell. Coloured with i {_:
specific technique, assume “band” coloration y
Main types of chromosomal anomalies:

— Deletion

— Duplication

— Inversion

— Translocation
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Deletion: loss of a stretch of chromosome of variable length. Pairing of 1 normal to 1 incomplete chromosome
brings formation of twisted structure.

Phenotypical consequences depend on genes lost
— In homozygotes, deletions often lethal
— In heterozygotes, effects can be (partly) balanced by normal genes on homolog chromosome

= W

Syndrome of the “cat cry” (affected babies cry as cats): deletion on one chromosome 5

Duplication: doubling of a stretch of chromosome (generally less harmful than deletions)
— In tandem when segment is repeated in the same direction
— Inverse when duplication has opposite direction

Inversion: change of order of two or more genes in a chromosome. It is caused by 2 breaking, 1 rotation of
180° of excised DNA stretch and 1 reunion

When two homolog chromosomes (one of them with duplication) pair, twisted or ring structures are created

Translocation: alteration of structure due to detachment of a stretch of chromosome and attachment to
non-homolog chromosome (video: http://www.youtube.com/watch?v=eUZYACO236c¢)

— simple
— mutual when involves 2 chromosomes

In human, involved in tumour onset
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c¢) Genomic mutations
Genomic mutations concern total number of chromosomes in each cell of an individual

— Polyploidy (or euploidy) if number of chromosomes is multiple of haploid arrangement (3n, 4n, ...)
o In animals more dangerous
o In plants more common

— Aneuploidy if loss or addition of 1 or few chromosomes
o In animals: strong alterations in phenotype
o In plants more common

o E.g. Down syndrome, or aneuploidies of sexual chromosomes (e.g. Turner syndrome and
Klinefelter syndrome)

* Turner’s syndrome (due to lack of one X chromosome in female sex; it brings short
height and sterility; incidence 1:5000 women)

* Klinefelter’s syndrome (due to one extra X chromosome in XXY individuals; it

brings male aspect, small testicles and developed breast, tall height, and backwardness;
incidence 1:500-2000 men)

From errors in metotic process, e.g., failed disjunction in pair of homolog chromosomes
— 1 gamete has pair of chromosomes
— 1 gamete without chromosomes

— From matching with normal gametes, trisomic (3 chromosomes) and monosomic (1 odd
chromosome) individuals are obtained. E.g., trisomy-21 (or Down syndrome)
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II.D.6 Mutagens

Frequency of mutations can increase (up to 1:100-1000 individuals) if organism is exposed to substances and
radiations (mutagens) that interact with DNA and can induce changes in nucleotide sequence

— Physical: radiations with different wavelength
o Heat: break bond between A or G base and sugar, with loss of the base (apurinic site)
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7 apurinico

—T] l riscaldamento
T—Al| 3

=t
-

i
"I‘w-Jﬁ

L~

o High energy radiations (wavelength < 30 pm)
» Jonizing radiations (cosmic rays, vy rays (emitted by radium (RA)), and X rays):
penetrate cellular tissues and ionize (~ charge + or -) molecules
e Can provoke breaking of DNA, loss of bases, bonding between helixes (cross-
link), mainly in dividing cells
e Used for tumoral treatment (cells with accelerated reproductive activity)
» Ultraviolet radiations (minor energy, but wavelength ~ 26 nm absorbed by DNA
bases)
e Can provoke formation of dimers of T or C (if 2 T nearby -> dimer T-T, that
prevents pairing of A on the other helix, with distortion of DNA molecule)
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Ultraviolet radiations can form dimers T-T, that prevent pairing of A on the other helix, with distortion of DNA molecule

— Chemical (e.g. iprite, constituent toxic gas)
o Analogs of nucleotide bases: can substitute normal bases during replication (e.g., 5-bromouracil,
brings SNPs)

o Reactive of nucleic acids: chemically react with DNA bases altering them. They are the most
numerous, some in products of wide use, e.g. nitrite in antioxidants in food (NaNO3 brings
SNPs)

o Intercalating agents of DNA bases: synthesized substances (e.g. acridine, used in colorants)
that inserts between bases. They brlng genetic mutation of triplets reading (frame shift)
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— Environmental mutagenesis: presence in the environment of many mutagenic substances (e.g. tar,
benzene, heavy metals, ..) capable of inducing tumours. A survey of World Health Organization
assessed about 70-80% of tumours is determined by environmental factors

11.D.7 Fixing DNA damages

All living beings have various cellular mechanisms for fixing DN A damages, among which:

— Photoreactivation of dimers T-T: Due to enzyme DNA photolyase, present in all cells, that cuts
bond T-T if activated by light
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— Repair towards damage’s excision: complex process that requires many enzymes:
o Detection of damage
o Cutting of DNA before and after the damage
o Remowval of damaged stretch of single helix (excision)
o Polymerization of missing stretch (DINA polymerase) and welding of extremities (DNA
ligase)

Repair towards excision is the most important mechanism for fixing common DNA damages (video:
http://www.youtube.com/watch?v=CcTayxEblio)

In mankind lack or reduction of one or more involved enzymes is associated with inherited pathology (Xeroderma
pigmentosum) that brings formation of skin tumours due to ultraviolet radiations present in solar rays.

11.D.8 Genome
Genome: entire genetic material of an organism

— It is identical in each cell of the same individual
— It is for 99% the same in all individuals of the same species

— Constituted by all possible nucleotide sequences of a species (or rather by genomes of all individuals
of the species)
— For extension, the term indicates also all products of genetic material (RNAs, proteins, ...)

In bioinformatics, genomic data/information: whole of available data and information, related to genetic
material of an organism (and/or to its products)

11.D.9 Transcriptome and proteome
For analogy with the definition of genome:

Transcriptome: whole of all possible transcripts (mRNA sequences) of an organism. In bioinformatics,
data/information of transcriptome: whole of available data and information, related to all possible transcripts
of an organism

Proteome: whole of all possible proteins (amino acids sequences) of an organism, deriving from different
transcripts. In bioinformatics, data/information of proteome: whole of available data and information, related
to all possible proteins of an organism

Also, other —ome: metabolome, ...

11.D.10 Studied organisms

On October 18, 2016 complete genomic sequences of more than 9’700 species are known, including 4’026
viruses, 2’010 phages, 3’316 bacteria, 202 archea, 179 eukaryotes

Main studied genomes (http://www.ebi.ac.uk/genomes/):
—  Human [~3'500 Mb (~750 MB)]
—  Mouse [~2'600 Mb] , Rat [~2'600 Mb)]
— Zebrafish (Danio rerio) [~1’300 Mb]
— Fruit fly (Drosophila melanogaster) [~120 Mb]
— Thale cress (Arabidopsis thaliana) [~115 Mb]
— Escherichia coli [~4 Mb], Yeast [~12 Mb)]
— Pea [~4’800 Mb], Maize [~5’000 Mb], Wheat [~17°000 Mb)]

Complexity of an organism is not related to dimension of its genome.
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II.D.11 Evolutionary biology

FEvolutionary biology is a sub-field of biology regarding the origin of species from a common ancestor, as
well as their changes, multiplications, and diversifications over time

— In evolutionary biology, homology (from Greek: “to agree”): similarity between characters due to
descent from a common ancestor. Stmilarity = an observable property that comes with a significance
measure

— Before Darwin, homology was defined by Linneus only morphologically (based on anatomical
structures)

— Darwin explained homology as the result of descent with modification from a common ancestor
— Modern genetics: homology is in DNA sequences

Homology among proteins and DNA is often concluded based on sequence similarity, especially in
bioinformatics. If two or more genes have highly similar DNA sequences, it is likely that they are homologous

Sequence similarity may arise from different ancestors:

— Short sequences may be similar by chance, and sequences may be similar because both bind to a
particular protein, such as a transcription factor

— Such sequences are similar, but not homologous

Sequence regions that are homologous are also called conserved
Sequence homology may indicate common function

Homologous sequences are said orthologous if they were separated by a speciation event: evolutionary
process in which a species diverges into two separate species, the divergent copies of a single gene in the
resulting species are said to be orthologous. Orthologs, or orthologous genes, are genes in different species
that are similar to each other because they originated from a common ancestor

Homologous sequences are said paralogous if they were separated by a gene duplication event: if a gene
in an organism is duplicated to occupy two different positions in the same genome, then the two copies are
said paralogous

— A set of sequences that are paralogous are called paralogs of each other
— Paralogs typically have the same or similar function, but sometimes do not: due to lack of the original

selective pressure (keeping the functions required by the species) upon one copy of the duplicated
gene, this copy is free to mutate and acquire new functions

Homologous sequences can be divided into two groups:

— Orthologs: genes that share the same ancestral gene and perform the same biological function in
different species, but have diverged in sequence makeup due to selective evolution

— Paralogs: genes within the same genome that share an ancestral gene and perform diverse biological

functions
homologs
A
/'_ T
paralogs
/_Aﬁ II
% P
g : Ja -
frog chick(* mousec(r mouse[} chick}  frogp
(r-chain gene [§-chain gene
\ gene duplication /
early globin gene

Phylogenesis or phylogenetics (from ancient Greek “origin of species”): study of life’s evolution
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— It is a fundamental instrument that reconstructs relations of evolutionary kindship of groups of
organisms in any systematic level

— Taxonomy: classification of organisms depending on similarities. Highly influenced by phylogenetics,
even if it remains logically and methodologically separated

Computational phylogenetics: concerns the compilation of phylogenetic trees and the study of anatomic,
biochemical, genetic, and paleontological data used for their construction

Phylogenetic trees: diagram that shows relation of common descent of taxonomic groups of organisms

— Evolutionary vision, development of life forms through speciation, from a common ancestor (root of
tree), along different lines, to the present species (leaves of tree)

— Each node (or bifurcation) represents the most recent common ancestor of subjects in subsequent
nodes

— Length of ramifications can be, or not, related to time or genetic changes between to subsequent nodes

High resolution phylogenetic tree, based on analysis of completely sequenced genomes. Image generated with iTOL:
Interactive Tree Of Life (http://itol.embl.de/), online viewer of phylogenetic trees
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Phylogenetic tree of living organisms based on RNA analysis
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Phylogenetic tree of 26 human populations; main are: Africans (A), Caucasians (B), Asians (C), Amerindians (D) and
Australopapuans (E)
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Phylogenetic tree of family of dogs

Phylogenetic trees are built on the base of a high number of genetic sequences; they are built using
computational methods. Various techniques exist for building trees using different methods for sequences’
alignment (e.g. ClustalW), referring or not to an evolutionary model

Many techniques used to identify the best tree on the basis of data, with high computational complexity NP
(Nondeterministic Polynomial-time). Heuristic researches and optimization methods are used, combined with
scoring functions of trees, to identify a tree acceptably fitting given data

Phylogenetic trees based on genomic analysis are important to evolutionary analysis, but have some limits:

— Often do not represent exact evolutionary history of a gene or organism

— Are based on data disturbed by different factors, easily confusing analysis based on phylogenetic
principles:

o

O
O
O

Théo Saulus

Genetic horizontal transfer

Hybridization between different species, very far in a tree before hybridization
Converging evolution

Conservation of genetic sequences
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ITI. TECHNIQUES OF BIOMOLECULAR SEQUENCE ANALYSIS (5, 12 OcCT.)

III.A Motivations

III.A.1 Importance of sequence comparison

Given two or more biomolecular sequences we would like to:
— Measure the degree of similarity
— Determine the correspondence between elements of distinct sequences
— Observe the patterns of conservation and variability
— Deduce the evolutionary relationship

To compare amino acids or nucleic acids in two or more sequences in “corresponding” position it is necessary
to allocate these correspondences, i.e. to align the sequences. Sequences alignment is the most important
problem together with searching for a specific sequence in a database

Biomolecular sequence comparison allows:
— Prediction of structure
o If 2 amino acid sequences have 20-30% of the same residues aligned, their 3D structure can be
very similar
o Shape and function follow the structure: similarity of sequence may result in similarity of
function

Identifying known or preserved patterns

Inferring function: preserved positions may represent important functional sites

Phylogenetic analysis: assessing similarities to infer evolutionary information

II1.A.2 Homology versus similarities

Homology (orthology and paralogy): conclusion that two or more genes (proteins) derive from a common
ancestor and thus from a common basic structure. Generally, sequences with more than 100 items:

—  Amino acidic sequences are homologous if they share 25% of the amino acids aligned

—  Nucleotide sequences are homologous if they share 70% of the nucleotides aligned

The difference in percentage is due to the difference in “alphabet”: there are 20 amino acids, vs. 4 nucleotides.

Similarity: is an observable quantity that can be expressed as a percentage. There is only the degree of
similarity, not of homology. Genes (and proteins) are homologous or not homologous

Homology search: given a sequence (query), search among known sequences is carried out. Homologous
sequences are used to interpret the new sequence

Motive search:
— Motive: Set of characters (nucleic acids or amino acids) not necessarily contiguous in a sequence
— Adequate vocabularies are used, knowing their grammars
— It is needed to know (and thus to derive a priori) the relationships between motives and functions
— Often it is not feasible in practice, homology search is the preferred approach

Similarity searches:
— To identify unknown sequences
— To find other members of families of genes or proteins
— To find proteins that are related

— To identify, in proteins and nucleic acids, regions that are conserved through evolution (i.e. the most
biologically important regions)
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— Find regions that overlap during the assembly as a result of sequencing
o Sequencing long molecule (DNA) is not possible

o Take many copies of the molecule, broke them randomly (shot gun) into subparts and sequence
their subparts

o Reassemble sequences obtained by subparts

... Insert...

S L. WECTOr Sequence ...

4 randomized cleasage (e partial digestion by a 4-baze hitter}#

4 subclone fragments into standard wector with primer sites, 4
zequence from both ends.

{computer-aided sequence assembly iz vzed o deduce complete sequence of the original cDHAY

Reassembling DNA molecule according to overlapping regions between its sequenced subparts

(http://www.phgfoundation.org/tutorials/dna/5.html or http://www.youtube.com/watch?v=0YpllbI0qF8)
after fragmentation (shot gun) of its several copies

II1.A.3 Sequence alignment
In order to compare nucleotide or amino acid sequences it is necessary to align the sequences
Alignment issue scenario:

— Depending on number of involved sequences
o Alignment of two sequences
o Alignment of multiple sequences (HP, cf. complements)
— Depending on type of alignment
o Global alignment: it aligns sequences along their whole length
o Local alignment: it defines the longest subsequence that gives the maximum similarity

III.B Alignment of two sequences

III.B.1 Dot matrix (dot plot)
Technique of visual inspection (Gibbs and McIntyre, 1970).

Sequence 1
Intuitive representation of the comparison between two sequences AlclclTlcC
Each point in the matrix represents a pair of identical characters in A X
the two sequences -
o |C X
Diagonal lines correspond to similarity regions @
ug)_ C X
w |G X | X
T X
Cc X
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Palindrome sequences

Filtering of background noise
— Strong background noise, especially with nucleic acid sequences
— Filters can be used to improve readability of the graph

o In particular, we seek patterns with a minimum number of correct alignments (stringency)
in a defined window (window size)

o E.g. stringency 7 with window size 11 means keeping the points that are within a window of
11 elements in which there are at least 7 exact matches

— Generally, you choose a window of about the same size of the motive you want to highlight

Dot matrix is the first step to compare two sequences
— Pros
o All possible matches between two sequences are found
o You can find repeated sequences, direct and inverse
o Useful for quick visual inspection

o Visual inspection
o Method not fully automated
o Image compression for long sequences
— Practice
o To compare DNA: large windows and high stringency
o To compare proteins: small windows and not necessarily high stringency

II1.B.2 Pairwise alignment

Besides visual alignment:

— How can we guantitatively estimate the degree of similarity (or difference) between two sequences?
— The optimal alignment of two sequences determines their similarity

— In general, how can we quantitatively estimate the goodness of the alignment between any two strings
of characters?
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First of all, we need to cope with the problem of alignment of any couples of strings of characters; we need
to consider the following events:

Substitution: acgef

Insertion: abcdef ———  acdef

Deletion: acd-f T

Insertion and deletion:
— They are the opposite one of the other
— They are globally defined as indels
— They imply gaps
Given two strings acbcdb and cadbd, a possible alignment:
ac-— - bocdb
—cadb-d -

“_»

The special character represents insertion of a space indicating a deletion in a sequence, or an insertion
in the other sequence (indels operations)

To discriminate between a good and a bad alignment it is necessary to use a scoring system that manages
indels and substitution events, and that assigns to each pair of characters in the obtained alignment (pairwise
alignment) a value which depends on its content

The total score is the sum of the values of each pair

This scoring system can be used to estimate the degree of correlation between strings, and also to describe
distance (or similarity) between strings, giving a score:

— Lower (higher) to pairs of identical characters
— Higher (lower) to pairs of different characters, or to gaps and optimizing the alignment by minimizing
(maximizing) the score function

Two sequences with high similarity are quite close, two sequences with low similarity are very distant

Example of scoring system (for DNA):
— Identical characters (match): +1
— Different characters (mismatch): -1
— Indel (gap): -1
Example of scoring system (for distance):

Example of scoring system (for similarity):

= If we assign a score of[0Jin the case of matches. of[1]in the

« Ifwe as ’_ign a score of +2lto each perfect match and a case of substitution of characters and|[2]in the case of
score of|-1|to each mismatch or indel, the similarity alignment with a space (insertion or deletion), the distance
between the two sequences considering the alignment is:  between the two sequences of characters considering the

alignment is:

s=axaaxc1)=4 d=jxoj+[1x1/+3x2/=7

To calculate distance between two strings it can be used:

— Hamming distance: defined between two strings of equal length as the number of mismatches

— Levenshtein distance (or editing distance): minimum number of operations (insertions, deletions,
substitutions) to transform a string in the other
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E.g.: to transform the string acatga in agctta you must:
- Insert one g
- Substitute one a with one t
- Deleting one g

al|-|c |la|]t [g]|a
a|g|lc |ttt |-]|a
- The editing distance between the two strings is: 3

Examples of non-unique alignments

acbad cbaad
1) acbha-d Editing
—-cbaad distance = 2
2) achb-ad Editing
~chbaad distance = 2
abcdbbb bcdaa
1) abcdbbb Editing
~bcd-aa distance = 4
2) abcdbbb Editing
-bcda-a distance =4

1I1.B.3 Formal definitions
Pairwise alignment. Formal definitions
Given a character sequence S:

— The symbol |S| indicates the length of S
— S[i] indicates the i-th character of S
— Example: if S = acbedb, |S| =6 and S[3] = b

Given two sequences S and T:

— Alignment associates to S and T the sequences S’ and T’, which can contain space symbols “-”, so
that:
o |5 = |T7]

o Deleting the spaces form S’ and T’ we obtain S and T
Alignment score of individual character or space pairs is denoted as o(z,y)
Scoring function of a pair of sequences is given by:

l
o (S'[i], T'[i])
i=1
with [ = |S"| = |T|

Optimal alignment of S and T is the one that mazimizes the similarity between sequences S’ and T’, or
minimaizes their distance

We can create a scoring function ad hoc for each problem. Example: scoring function to compare amino acids
has to consider the chemical-physical similarities and differences between amino acids

I11.B.4 Substitution matrices

Biologically, substitution of nucleic acids or amino acids should be considered all with the same weight, or
are there more important substitutions (less likely) and other less significant (e.g., purine-purine, pyrimidine-
pyrimidine, hydrophobic-hydrophobic, ...)?
— Equivalent amino acid classes can be derived on the basis of their:
o Chemical and physical property
o Frequencies of substitution calculated on the protein sequences known to be homologous

In evaluating an alignment of bio-sequences, one wonders if the alignment is random or biologically significant,
and if so, how much it is significant
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Different weights must be assigned to the editing, through substitution matrices

Substitution matrices assign a numerical value to each possible pair of characters (nucleotides or amino
acids), which represents the probability of a nucleotide or amino acid to become another in a certain
evolutionary time

—  Nucleotides: simple scoring schemes are sufficient
—  Amino acids: their chemical differences should be considered

Since a scoring function associates a numerical value to each pair of characters, these matrices can be used
as scoring functions for alignment of nucleic acids or proteins

Aromatic” 7

Hydropilobic < Positive
Charged

Different chemical features of amino acids

Symmetric substitution matrices (by necessity more than by choice)

There are various substitution matrices; main types are:
— PAM matrices (Percent/Point Accepted Mutations)
o Margaret Oakley Dayhoff (1978), for amino acids
o States (1991), for nucleotides
— BLOSUM matrices (BLOcks SUbstitution Matrices)
o Henikoff and Henikoff (1992), for amino acids

a) PAM matrices

PAM matrices (Percent/Point Accepted Mutations): developed in the late 70s looking for mutations in
closely correlated superfamilies of amino acid sequences. Accepted: mutations accepted by evolution

It was noticed that the substitutions that occur between closely related sequences are not random

It was concluded that certain amino acid substitutions occur more easily than others, probably because these
substitutions do not significantly alter the structure and function of a protein. Homologous proteins do not
necessarily need to have the same amino acids in each position

For the construction of PAM matrices homogeneous blocks of aligned sequences are considered

Phylogenetic trees are created (to model the evolution) and changes in proteins adjacent in the tree are
counted

To avoid the problem of multiple substitutions, very similar sequences are chosen; to determine PAM matrix:
— Consider substitutions in 71 groups of protein sequences similar to at least 85%
— Counted 1572 changes, or “accepted” mutations

For each amino acid (j), count all N, changes (quantity of changes) in another amino acid (k)

— Example: How many phenylalanines (F) stay unchanged and how many change in one of the other 19
amino acids?

— A symmetric matrix n (n = 20) is derived
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Normalize by dividing by the total number of changes Z:@: L A, obtaining the frequency substitution matriz

jm>
A (normalized) in the considered blocks of sequences (if there are more blocks, counts are summed before

normalizing)

N.
Ay =t
J
Zm=1 A]m
PAM matrix is derived by evaluation of A, substitutions in 71 groups of protein sequences similar to at least
85%

Counted 1572 changes, or “accepted” mutations e.g.:

Ar »: 0.0002 A,:0.0013
A¢x: 0.0001 Arx: 0.0000
Ac: 0.0001 Ay 0.0001
Acp: 0.0000 A r: 0.9946
Ar ¢ 0.0000 Acp: 0.0001
A¢ o 0.0000 Acg: 0.0003
Acg: 0.0000 A1 0.0001
A¢ ¢ 0.0001 Ary: 0.0001
Ar i 0.0002 Ay 0.0021
Ay 0.0007 Ay 0.0001

K\j Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Pro Ser Thr Trp Tyr Val

EF R ¥ B € 0 ¥ €& K I k K K P 5§ T W Y ¥
Ala & 9867 2 9 10 3 8 17 20 2 6 4 2 6 2 22 3% 3} 0 2 18
Arg R 1913 1 o0 1 110 o0 0 10 3 1 19 4 1 4 6 1 & 0 1
Asn N 4 19ge 3% 0 4 6 6 21 3 1 13 0 1 2 20 9 1 4 1
Asp D ] 0 42952 o0 6 58 6 4 1 0 3 0 0O 1 5 3 0 0 1
Cys C 1 1 0 0% o0 o0 0 1 1 0 0 0 O 1 § L 0 3 2
Gln Q 3 9 4 5 09 27 1 23 1 3 6 4 0 6 2 2 0 0 1
GluE 10 o0 7 5% 0 35965 4 2 3 1 4 1 0 3 4 2 0 1 2
Gly 6 21 1 12 A1 1 & 7ess I o 1 2 1. A a 24 3 0 o 5
His H 1 g 18 3 1 20 1 0992 o 1 LI 0 2 3 4 % & & i
Ile I 2 2 3 1 2 1 2 0 0982 9 2 1l 7 0 1 7 0 1 33
Leu L 3 13 0 o0 6 1 1 4 22947 2 4 13 3 1 3 4 2 15
Lys K 2 3 25 6 0 1l 7 2 2 4 19% 20 0 3 & 1l 0 1 1
Het 1 1 o 0 o0 2 0 0 0 S5 & 4974 1 0 1 2 0 0 4
Phe F 1 11 o0 o o0 0o 1 2 & 6 0 493 0 2 1 3 28 0
Pro P 13 5 2 1 1l 8 3 2 § 1 2 2 1 19%6 12 4 0 0 2
ser § 28 11 34 7 1 4 6 16 2 2 1 74 3 179840 3B 5 2 2
The T 22 2 13 4 1 3 2 =2 1 1 2 &8 6 1 5 32971 0 2 9
Tep W 0 Z 0 o0 o0 O O O O O O 0 0 1 0O 1 097 1 0
Tyr ¥ 1 o3 o0 3 0 1 0 4 1 1 0 0 21 0 1 1 29945 1
Val ¥ 13 20 L 3 2 2 ¥ 3 85 1l 117 1 3 2 10 0 289901

Substitution matriz (quantity of changes) Nj,k for PAM1

A probabilistic Markov model is then constructed to model the substitutions

PAM matrix (P), of transition probability of each amino acid into another amino acid, is defined as the matrix
that in each step allows preservation of 99% of the sequence

Calculated from substitution matrix A as follows:
— Pyp=cxAy fork#jand P;; = 1 —=>7" Py

— ¢ chosen in order that the portion of expected changes by the model in a step is equal to 1%, calculated
on the initial distribution (p;), observed in the initial blocks
— The condition on c is obtained, by imposing;:
DD Pypy=cx) Y Ayp; =001
Ktk Ktk
PAM matrix contains the log odd (logit) probability (p) of transition of each amino acid into another amino
acid:
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(p) = log(odd(p)) ; odd(p) = T—p
In practice:
— If PAM;; > 0, likely transition of i in j
— If PAM;; = 0, random transition of i in j

— If PAM,; < 0, unlikely transition of i in j D:;-o/
o -
PAM matrix expresses probability of change “in a step” (1% of
sequence change) gt

To obtain higher percentages, multiply the matrix by itself

— PAM2 = PAMI*PAMI = (PAMI)? 40%-
~ PAMI0 = (PAM1)"

PAM250 matrix is the most used

— It accepts a change of 250%

T T T T T
— The amino acid sequences maintain at this level 20% of 50 100 150 200 250
stmilarity PAM

20% -

Example: what is inserted in the matrix of scores when using PAM250 as substitution matrix?

— Calculate PAM250 = (PAM1)*"
— Convert PAM probability (p) in logit(p) = log<%):
o PAM250(F —Y)=0.15
o Divide by the frequency of changes into F' (0.04), with respect to all observed changes, then

do the logarithm:
0.15

logyo (m> = 0.57

o Do likewise for Y — F: log;y(22) = 0.83

0.03
— Calculate the score for a change F,Y as 10 % 2831057 —

integer values)

7 (by convention, multiplied by 10 to get

ORIGINAL AMINO ACID

Ala Arg Asn ksp Cys Gln Glu Gly His Ile Leu Lys Ilet Pro Ser Thr T[p@ val Tot. |Freq

4 R ¥ D C Q@ E 6 H I L K X P 5 T W y
Mai 13 6 S 9 5 & 9 12 & & 6 T 7 4 1 11 11 2 4 9 157| 8
hrg R 3 17 4 3 2 5 3 2 6 3 2 & 4 1 4 4 3 71 =2 2 88| 4
hsn W 4 4 6 7 2 5 6 4 6 3 2 5 3 2z 4 5 4 2 3 3 80| 3
Asp D 5 4 8§ 1 1 7 1 § 6 3 2 5 3 1 4 5 5 1 2z 3 91| a
Cys C 2 1 1 1 s 1 1 2 2 2z 1 1 1 1 2 3 2 1 & 2z @83 4
Gln 0 i § 5 6 1 10 1 3 97 2 4 5 3 1 a4 3 3 1 2 3 7T7| 3
Glu E 5 4 7T 11 1 9 12 5 3 3 2 5 3 1 4 5 5 1 2 3 94| 4
Gly G 12 5 1 1o 4 7 g 27 5 5 4 3 5 3 8 1l 9 2 3 7 162 | 7
His H z § § 4 2 %7 4 2 15 2 2 3 z 2z 3 3 2z 2 13 2 T2 3
Ile T i 2 2 2 2 2 2 & 2z W & 2z 6 &5 2 3 4 1 3 9 TO| 3
Leu L & 4 4 3 2 6 4 3 5 15 34 4 22 13 5 4 6 6 7 13 164| 7
Lys K 6 1 W0 8 2 16 6 5§ & S 4 24 9 2 6 8 8 4 3 5 183|7
Met M i & o0 o B ¥4 o203 Z 6 2 4o A I f @ 20 19
z 1 2 1 1 1 1 1 3 5 6 1 4 3 1 2 2 4& 3 93 Ci)
Pro P 7 § § 4 3 5 4 § 5 3 3 4 3 2 20 6 § 1 z 4
Ser § ¢ 6 8 7 7 6 7T 9 5 5§ 4 7T § 3 9 W 9 4 4 § 13| 6
Thr T &5 5 6 6 4 5 5 & 4 6 4 & 5 3 6 8 11 2 13 109 5
Tep W 5 2z © © © o o© o 1l © 1 @@ o 1 o 1 o 55 1 o 622

L, 1 2 1 3 4 ¥ r 3 2z 2 v 2Q9 1 z 2 3z = 3z U Cg)
Val v 7 4 4 4 4 4 4 4 5 4 15 0 4 I0 S 5 5 72 4 17 197
Tot. 99 100 99 99 98 100 98 99 102 88 106 107 95 104 100 100 97 172 104 101 2068 1

Substitution matriz (in %) for PAM250 (= evolutionary distance)
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c 1z

2 0 2 log odds matrix for PAM250

T -2 1 3

P -2 1 0 6

A -z 1 1 1 2

& -2 1 0-1 1 §

N -4 1 0-1 0 0 2

D -5 0 0-1 0 1 2 4

E -5 0 0-1 0 0 1 3 4

G -5-1-1 0 0-1 1 2 2 4

H 3-1-1 0-1-2 2 1 1 3 6

R -4 0-1 0-2-% 0-1-1 1 2 €

K -5 0 0-1-1-2 1 0 0 1 0 3 5§

M 5-2-1-2-1-3-2-3=2=1-2 O O &

I -2-1 0-2-1-%-2-2-2-2-2-2-2 2 5§

1L -6 -3-2-3-2-4-3-4-3-2-2-3-3 4 2 &

¥ 2-1 0-1 0-1-2-2-2-2-2-2-2 2 4 2 4

F -4 -3-3-5-4-5-3-g-5-5-2-4-5 0 1 2-1 9
P 0-3-3-5-3-F-2-4-4-4 0-4-4-2-1-1-2 (Do
W 8 -2-5-6-6-7-4-7-7-5-3 2-3-4-5-2-6 0 017

C 8 TP AGNUDTERG HRIEKNETITILVE?YW

To measure the distance between amino acid sequences the “PAM units” can be used. Two sequences S1 and
S2 have 1 PAM unit distance if S1 can be transformed into S2 with an average of 1 point mutation every 100
amino acids

Each PAM matrix is used to compare sequences that are a number of PAM units distant. E.g. the PAM120
matrix can be used to compare sequences whose distance is 120 PAM units

In a sequence the same position may change several times and then go back to the original character. Two
sequences that are 1 PAM distant may differ by less than 1% (their similarity is at least 99%)

b) BLOSUM matrices

BLOSUM matrices (Blocks Substitution Matrices) of substitution of amino acids, similar to PAM (Henikoff
S, Henikoff JG. Amino acid substitution matrices from protein blocks. PNAS 1992;89(22):10915—10919.)

— PAM based on global alignments between sequences
— BLOSUM based on alignments of blocks of segments of amino acid sequences closely related
A block is a highly conserved region without gaps

— To align sequences, the matriz of weights must be known. We use “unitary” matrix (match = 1,
mismatch = 0)

— Iterative techniques have also been used

The principle is based on the likelihood of substitutions, based on available data

For each pair of amino acids x and y, calculate the ratio of the likelihood (emy) that x and y are aligned by

chance:

— Calculated based on frequency of occurrences of z and y in the block, and portion of times that z and
y are in the same column (i.e., had a likely evolutionary substitution)

DPubDy
o e, = =¥ ifg=
2p.Py -
o e B = —=2tifg
oy ey +y

o p.and p, probability of z and y in block; pxy probability of finding x and y paired in the same
column, calculated as

nmy

Poy ="
Ty Zw#y nwy

Then calculate -2 log,(e,,,) and round to the nearest integer result to obtain the BLOSUM matrix

That is, obtained blocks of aligned sequences are used to count the occurrences of each pair of aligned amino
acids (in the same column)

Théo Saulus Page 69 of 204 Politecnico di Milano, winter 2021



Prof. Marco Masseroli Bioinformatics and Computational Biology

Example on only one block and a simplified alphabet of 3 characters (A, B, C):

Observed values:
sequencel: B A@B. 24 characters: A: 14;B: 4, C: 6
sequence2: AAAC  Freguencies: A: 14/24; B: 4/24; C: 6/24
sequence3: AACC (=p,orp)
sequenced: AABA  Aligned pairs: 4*[ )z 60 (=Xn,)
sequence5: AACC
sequencet: AAGYL (P =N/ X0y, =) AA: 26/60 BB:3)60
AB: 8/60 BC:6/60
AC: 10/60 CC: 7/60

2

Observed proportions are compared with expected proportions

EP
Aligned Pairs | Expected Proportions (EP) Observed Proportions (OP) —2log, (ﬁ)
14 14 196 26
AA PPy _ﬂ*ﬂ_% Dy —% 0.70
14 4 112 8
2 e 2 —_ _ = — = — -1.
AB PaPy = %54 94~ 576 Pay =50 109
14 6 168 10
2 e 2 —_%— = — = — -1.
AC PaPy = =% 54" 94~ 576 Pay =50 Lol
R _ 4. 416 _ 3 1.70
PePy = 54" 94~ 576 Pzy =50 ‘
4 6 48 6
BC PalPy = % 54" 94~ 576 Pey = 50 053
6 6 36 7
CcC pmpy_ﬂ*ﬂ_% pwy—% 1.80

Rounded to nearest integer: matrix BLOSUM

Al1]-1]-2
Bf-1] 2 1
Cl 2 1 2

Entry (i,7) of the matrix is proportional to the frequency of the substitution of the amino acid A; with the
amino acid A; Values calculated based on the substitutions in a set of 2000 conserved patterns (blocks)

To avoid that very similar sequences in a block polarize the estimation, clusters are created in the block.
Each sequence in a block weighs in inverse proportion to the number of its occurrences in the cluster

BLOSUM-n means that the sequences used in each cluster are similar to at least n%. To find relationships
between sequences close in time by evolutionary point of view, a large n is used.

BLOSUMSG62 is the standard
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\ Common amino acids have low weights

G 3
/
t 3k, Log odds matrix for BLOSUM62
P -3-1-1 7
@ o1 0-10®
€ -3 0-2-2 0 6
N -3 1 0-2-2 0 €
D -3 p-1-1-2-1 1 6
E -4 0-1-1-1-2 0 2 §
Q -2 0-1-1-1-2 0 0 2 §
H 3-1-2-2-2-2 1-1 0 ¢ B
R -3~1-1-2-1-2 0-2 0 1 0 5 Rare amino acids
K 3 0-1-1-1-2 0-1 1 1-1 2 S5 havehighweights_
¥ -1-1-1-2-1-3-2-3-2 0-2-1-1 § —— :
I 4-2-1-9-1-4-1-3-3-3~-3-3-3 1 4 (_
L 1-2-1-3-1-4-3~-4~-3-2~-3-2-2 2 2 4 \
vV -2 0-2 0-3-3-3-2-2-3-3-2 1 3 1 4 \
F 2-2-2-4-2-3-3-3-3-3-1-3-3 0 0 0-1 6
Y -2-2-2-3-2-3-2-3-2-1 2-2-2-1-1-1-1 3 7
@—2-3-2- -3 -2-4 -4 -3 -2 -2-3-3-1-3-2-3 1 2
CSTP®GNDBQHRK)(ILVP¥
n T2 Tid TA TE T TL vV TL
K -3 0-1-1-1-2 0-1 Negative weights for
M -1-1-1-2-1-3-2-31 |gss likely substitutions
I -1-2-1-3-1-4-3-3-= ——x
L -1-2-1-3-1-4-3-4~ <3 -2-2 2 2 4
-1=-2 0-2 0-3-3 = -2-3-3-2 1 3 1 4
—2—2—2—4—2—3—3@—3—3—1—3—3 0 0 0-1 &
¥ 2-2-2-3-2-3-2-3-2-1 2-2-2-1-1-1-1 3 7
W -2 -3 -2-4-3-2-4-4-3-2-2-3-3-1-2-2-3 1 211
csrpncn@ngunxnli.vprw
R -3-1-1-2-1-2 0-2 0 1 O 5
K =3 0-1-1-1-2 0-1 1 1 -1 pgsitive weights for more
M -1-1-1-2-1-3-2-3-2 0-2 ) o0
T o o8 <1 <% of g e on =y likely substitutions
L 1-2-1-3-1-4-3-4-3-2-3-2-2 2 2
¥V =-1=-2 0-2 0~-3-3~3-2-2=3-3~-2 1 3 1
P -2 -2-2-4-2-3-3-3-3-3-1-3-3 0 0 0-1
—2—2—2—3—2—3-2—3—2—1 2-2 -2 -1-1-1-1 7
W 2-3-2-4-3-2-4-4-3-2-2-3-3-1-3-2-3 1 211
CSTDAGNDBQHRKHILV@YH

c) Differences between PAM and BLOSUM matrices

PAM based on eaplicit evolutionary model (i.e. BL,OSUM based on implicit evolutionary model

replacements are counted on branches of
phylogenetic tree)
PAM based on mutations observed in global

BLOSUM based only on highly conserved regions in

] hich incl h highl
alignment, which includes bot ighly conserved series of alignments without gaps

regions and highly mutated ones

Substitutions are counted differently: unlike PAM matrices, BLOSUM procedure uses clusters of sequences
whose mutations are counted not in the same way

High numbers in names of BLOSUM matrices show
high sequence similarity (i.e. low evolutionary
distance)

High numbers in names of PAM matrices indicate
high evolutionary distance

Example:

PAM150 used for sequences more distant than those for which PAM100 is used
BLOSUMG62 used for sequences closer to BLOSUMS50

Current research: present innovative approaches include the incorporation of information on the sequence
secondary structure in substitution matrices
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II1.B.5 PAM vs BLOSUM matrices
PAM matrices:

— Based on global alignments of closely related proteins

— The PAMI is the matrix calculated from comparisons of sequences with no more than 1% divergence

— Other PAM matrices are derived from PAM1

— The number with the matrix (e.g. PAM40, PAM100) refers to the evolutionary distance; greater
numbers mean greater distances

BLOSUM matrices:

— The number after "BLOSUM" refers to the minimum percentage identity of the blocks used to
construct the matrix; hence greater numbers mean smaller distances

— BLOSUM 62 is a matrix calculated from comparisons of sequences with no less than 62% similarity

— The BLOSUM series of matrices generally perform better than PAM matrices for local similarity

searches
BLOSUM 80 BLOSUM B2 BLOSUM 45
PAM 1 PAM 120 PAM 250
Less divergent = > More divergent

BLOSUM with high numbers and PAM with low numbers are both designed for comparisons of closely related
sequences.

BLOSUM with low numbers and PAM with high numbers are designed for comparisons of distantly related
proteins.

1I1.B.6 Gaps and gap penalty

Two biomolecular sequences can differ not only by the substitution of a residue with another, but also for
insertion or deletion of residues

To align sequences is therefore often necessary to introduce spaces “—” in one or both sequences, also to lead
them to the same length. A sequence of contiguous spaces is defined gap
A criterion to include gaps is required

— Inserting a gap lowers the alignment score

— Having to maximize alignment score, gaps are inserted only when strictly necessary

Example of opening a gap: Example of extending a gap:

Seq.1: = c t & a a

Seq. I: a c t & a a
Seq.2: t c a t c a Seq2: - t ¢ a t ¢ a
Seq. 2: - L c a E c a Seq.2: - - t c a t c a

How much should “weigh” the introduction of a "gap"? Does deletion of n consecutive bases has equal weight
of n independent deletions of 1 single base?

— More consecutive gaps are more likely, given that they can be due to the same mutation (of more
elements)

— Individual gaps are due to different mutations

Usually, we distinguish between gap opening (go) and gap extension (ge), penalizing more beginning than
an extension (of length 1):

9o > Ye

— Penalty example: g = g, +g.xl or g = g,+¢g.*(l—1)

— Usually insertions and deletions of several residues at a time, rather than scattered insertions or
deletions
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Example (parameters recommended by ClustalW):

— For DNA: match = 1, mismatch = 0, g, = 10, g. = 0.1 * [ for insertions/deletions of length I
— For amino acids: BLOSUMG62, g, = 11, g. =1 * [

I11.B.7 Computational techniques
To computationally solve the alignment problem, i.e. to find the optimal alignment, means:

— To maximize the number of identical symbols aligned (meaning in the same position)
— To minimize insertion and deletion events and their length
— To minimize the number of different symbols aligned

In order to find the optimal alignment, we can build all the alignments and then select the best one. Obvious
method, but prohibitive (or impossible) due to very long length.

Computational cost to compare all the possible alignments requires time proportional to the product of the
lengths of the two sequences (without considering gaps)

— If the two sequences are long about n the problem becomes n?

— Also including the possibility of gaps, the problem becomes exponential

— If nis the number of elements of sequence A and m is the number of elements of sequence B, about
nm comparisons should be done

Dynamic programming techniques allow to obtain the optimum solutions with time proportional to n?
where n is the longest sequence length

— A dynamic programming algorithm finds the best solution by dividing the original problem in
subproblems simpler to solve

— The solution of each subproblem is based on the solutions of the already solved subproblems
Used in the resolution of optimization problems. In this case, we must maximize the alignment score
Let's see the grid-based method:

Consider the following dynamic programming algorithm:
— Given two sequences S and T, we compare the first character of S with the first character of T
considering the scores: o(S[1],T[1]),0(S[1],—),o(—,T[1])
One can ask if it is better to align:
— The first character of S with the first character of T
— Or the first character of S with a gap
—  Or the first character of T with a gap

You must choose the action that is associated with the highest 0 1 2 3 4 n=5
score and iterate the process f i r s t
We use a matrix nxm [(n+ 1) x (m + 1)], with |S| = n, |T| = 0
118
We put the first sequence along the top edge of the matrix and a
the second sequence along the left edge, leaving I row and 1 2
column free to consider the possible insertions of gaps 1]
4o
We fill the matrix row by row: ar
The value of each entry is computed with the formula: m=6 |4

V= 1,5~ 1)+ o(ST Tl
V(i,j) =max |  V(i—1,j)+0o(S[,—), |
\ V(i,j—1)+o(—=,T[j]) }
With initialization: V(0,0) =0
Base case: V (i,0) = ZékZO)J(S[k], —), and V(0,5) = izoo(—,T[k])
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At each step you choose the best among the scores that would be obtained:
— By aligning character i of S with character j of T
— Or by aligning character i of S with a gap
— Or by aligning character j of T with a gap

Formal expression: alignment equation Given 2 sequences x and y to be aligned:
F(V(i,5)) = F(i,j) is the matrix of the alignment procedure with:
F(0,0)=0

Fli—1,j-1)+s(x,v,)
F(i, j)=maxy F(i—1,/)+d

Fli,j-1)+d
—  8(x;,y;) the substitution matrix
— d the linear penalty for a gap
That is, on the matrix:
j-1 J
I, F (1, Jj—1
IS VE) | )
s(.rl.,}-' j) T
i | Fli-1j) —d—F(i,j)

The value in the position (i,j) is the score of the best alignment of the first i positions of the sequence along
the top edge of the matrix respect to the first j positions of the sequence along the left edge

Initialization:
-f .
X(I) 59'\ X(I)
f i r s t NE i r s t
0 4] i.0
s s 01 [\ ij1
s|e e 0j | ij
= —_
c ? c
o -]
n n
d d

Moving horizontally in the matrix is equivalent to introduce a gap into the sequence along the left edge

Moving wvertically in the matrix is equivalent to introduce a gap into the sequence along the top edge

xi) /el
f i /r s t
0 .0 /
s 0j-1 | ij1
=|e 0j [ ij it
> e Vij+1
]
n
sesd
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To move diagonally in the matrix is equivalent to align the corresponding characters in the two sequences
-t

x(i) | sec
f i /r s t
0 i,0 /
s 01 | ij1 /
= |e 0j ij
7 e S1,j+1°
o
n
d
Example: fol i r | s |t
If 0 |1
. v
o(f,9)=-3 [T
8t o(f,—)=-1 c
o(—,s8)=-1 )
n
d
We have: V(1,1) =max(0—-3, —1-1, —(1—-1)) = =2

But what will be the optimal alignment and its score? For sequences with equal or similar length, the (n, m)
cell gives the score of the optimal alignment

x{i)
f i r s t

y(i)

0|0 |® | ®w

3

e

-3

n.m

Having taken into account at each step of the move done to complete the value of a cell, starting from the
(n,m) cell through traceback go backward in order to find the optimal alignment, for example:

-fir—-st
) sec—-ond
x(i)
f i r s t
0
Il
s L33
5]
c h [E
rE
o )
n Y
d i
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A trivial example of nucleotide alignment problem:
— Find the best pairwise alignment between the sequences GAATC and CATACG
o Use for the gap a linear penalty of -4
o Use the following substitution matriz:

Alc |G |T
10 |5 [0 |-5
5 |10 |5 [0

0 [-5 |10 |-5
T |5 [0 [-5 |10
(A and G are Purine, T and C are Piramidine)

Qlaf»

Initialization and gap introduction (-4):

- ——— - = G GAATC
- G CATACGE ' - Bt
i T x() ‘ L X
| | | [Tel] a A T c
] ‘ G } A A T c !
= \ | ofFp atp s P12 P epi0
Q0 4 L
v c \ 44
_|¢€ -4 = {H,L
= > i
= A A \ ﬁ 8
T T |\ 3-12
A A \ @-16
2 c +-20
= G |W.os
gap =-4 cC|G|T
A 10|50 |5
\ 5 C 10]5 |0
X
G X G|o |5 |10 (5
G A A T C
\ #hN Gils A . T[5]|0][5 [10
: 0 l::b\_4 = 8§ = -12 = -16 = -20 | X(i)
e %_4 Yo G|i A A T C
‘E A U_S N\? '4|.|'::D -8 = -12 == -16 == -20
il c {2_&\:& 5&
T V2 sla [¥s
I = |
A k-m T a2
] )
c inz_zo A 3-16
C 20
G Y24 N
G V.24
Warning: when selecting the max, beware of negative numbers!
gap = -4 Alc|e|T gap = -4 AlC|G T
Al10]5 [0 [5 Al10|5]0 |5
cl|s5|w0]s5 |0 lelss 105 o
G |0 |5 [10[-5 G |0 |-5][10]5
T[5 0[5 [10 T 0 |-5 |10
x(i) x(i)
G A A T C G A A T c
(0 =l 4 8 b 12 5 -16 = 20 10 = 4 e B8l 12 =p 16 = 20
c Y4 M5 ? ? ? ? c Y4 B 5 8 9 ? ? ?
=3y L = [A U g
> JI'I == 1l
T 12 T 12
A 16 A t16
c 1-20 c 120
G ¥.24 G Y24
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gap =-4 Alc |G |T gap=-4 Alc|G|T
A |10 |-5 -5 A 105 |0 [-5
__J€ 15 105 |0 c |-5|10 /-5 |0
G |0 |-5 10 |-5 G |0 |5 [10 |5
T|5]0 /(5 [10 T |-5|0 |5 |10
(i) (i)
G A A T C G A A T ¢
/
HO = 4 = -8 e 12 = 16 =2 -20 n 9 = 4 s B e <12 = -16 =p -20
[ Y4 B 5 8 9 K 13 ? ? c ¥4 P55 9 K 13 P2 b2
S |A v.g = (A Ug
= Il = Il
R T [h2
A 116 A 16
c 7-20 c 20
G V.24 G V.24
gap = -4 Alcle T gap =-4 AlC|G | T
A 05 = A |10 ]-5 -5
c 10 |-5 | 0 | Which is the alignment of this point? € e LT0HS: |1d
) " GA G |0 |5 |10 |-5
G |9 |5 |10 |5 | Doing “traceback” ... CA
T|5]0][5 |10 _ T|s5[0]|5 [10
x(i) x(i)
G A A T C G A A T c
10 = 4 b B o 12 = 16 =5 20 0 gt Sl 12 165 20
4 5 9H 13 P2 6
C va F 593 a2 e c Y4 M5 23
S|a ¥9 I 4 F 5 A 1 ols 3-8 7 S|A v-8 ' 4 5+8 1 L 3 L -7
T Y12 T %-12
A 16 A 16
i v
& 220 c 720
G V.24 G V.24
After successive computations,
gap = -4 AlC|G|T
Al10](5 |0 |-5
Score of the optimal alignment: 13 c 1015 |0
G |0 10 [-5
T[5[0 (-5 [10
x(i)
G| A A T c
ﬂo -§> 4 T8 T 12 =f-16?u-20
_ | IR 9> 18 |12 |7 6
A [t s o T 3P 7
ol 4 Iu
T SR G IR MR IU!] 11 EQ.‘? 7
A 116 12 2 11 \T 6
A4 W w b4 T
[ ;20416 g2 [g7 ﬂ,ﬁ\ AL
G V.24 -10 6 3 7 13

Starting from the last cell (n,m) and doing “traceback” we can find optimal alignments:

GA-ATC- GAAT ~C = GAAT-C - GAAT-C -
CATA-CG CA-TACG C-ATACG -CATACG

All alignments with score = 13

Multiple solutions: when we find an alignment of 2 sequences, this may not be the only best alignment

With techniques of dynamic programming, the computational complexity of optimal alignment of two
sequences of characters of length n and m is:

—  O(n + m) for initialization

O(n - m) for calculation of other elements of the matrix
—  O(n+m) for traceback

So, if n = m: the total computational complexity is O(n?)
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I11.B.8 Global alignment

Actually, used algorithms are based on maximizing scores (similarity) and not on penalties to minimize.
Scores usually derived from substitution matrices and calculated based on statistics (like PAM and BLOSUM)

Global alignment: two sequences of comparable length are aligned to find the best score of similarity
between the entire sequences, which aligns two sequences over their entire length

— Algorithm of Needleman-Wunsch (1970)
— Application example: comparison of genomic DNA and ¢cDNA (coding)

Needleman- Wunsch algorithm:
— Matrix of scores is constructed as in previously described algorithm (based on grids)
— Rule for calculating the scores:
(S(t—1,7—1)+ s(at,bj),
S(i,j):maxJ S(i—1,7)— Wz, L
S(i,j—1)— Wy
where s(a,;, bj): score assigned to the match/mismatch, Wx: row gap penalty, Wy: column gap penalty
— Scoring matriz s: must contain only positive values (the BLOSUM or PAM may be used if normalized)

Optimal global alignment calculated from the cell with the best score (which will be in the last row or last
column of the score matrix) and reconstructed backwards (traceback)

Needleman-Wunsch algorithm implementation: Needle - EMBOSS Pairwise Alignment (European
Bioinformatics Institute): http://www.ebi.ac.uk/Tools/psa/emboss_needle/

II1.B.9 Local alignment

Local alignment. two sequences are aligned to find the best score of similarity between subsequences;
alignment on the full length of both sequences is not required
—  Smith-Waterman algorithm (1981), Needleman-Wunsch algorithm variant that gives local alignment
of two sequences
— Useful when comparing sequences that do not have high similarity over their entire length, but still
contain regions with high similarity
— Application example: search for short motives shared between long sequences, or for common
subunits in proteins

Local alignment algorithm provides the n alignments with maximum score of the subsequences of two
sequences

Global vs local alignment

Global,

MNeedleman &"‘-_‘
Wunsch E:
Local,
Smith &
Watertnan

Smith- Waterman algorithm: search for local subsequences
— Implies that the alignment outer regions should not influence, positively or negatively

— A negative score upstream the subsequence suggests ignoring the sequence upstream and to start a
new alignment

— When the total score value is negative, the score is set to zero and the alignment is ended
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— Rule for calculating the scores:

P L
l H(Zvjil)i Wya J
0

Scoring matriz s: it must also contain negative values (BLOSUM or PAM are generally used)

Initialization:
- H(0,0) =0
- H(:,0) =0
- H(0,j) =0

Local alignment are identified by looking for scores above certain threshold and backwards reconstructed
(traceback)
Traceback:

— Started from H (i, j) with highest value above the threshold

— Ended when a H (i, j) = 0 is met

End of optimal local alignment of sequences not only in a cell of the last row or last column of the score
matrix

A simple example of a local alignment problem: find the best local pairwise alignments with score > 20
between the GAATC and CATACG sequences.

Use a linear penalization of —6 for a gap
Use the following substitution matrix:

Qlal=
&
S
&
(es)

T | -5 0 -9 10
(A and G are Purine, T and C are Piramidine)

Score threshold = 20 gap =-6 AlC|G|T Score threshold = 20 gap =-6 Alc|G|T
Initialization: A (10|50 |-5 The cell with the highest value gives A |10|-5 |0 |-5
€ |48 |25 |8 the optimal alignment score: 24 & 010
G |0 |5][10 |5 G 10 |-5
T |5|0 |5 |10 T 5 (10
x(i) x(i)
A A T | G A | Na T c
0 0 0 0 0 0 0 0 0 0 0 | o
c 0 c 0 o { o d o 0 [j10
=AF 0 = . 3 ="
= = |A 0 0 I 10 '\fu 10 u\t 4
T g T 0 0 1 4 { 5 [pe0 14
A o] A 0 0 )Jql 10 -un 14 14 ] 15
c 0 c 0 0 |[Va V8 |14 [ne4
G 0 G 0o [T10= 4 |7 4 [“8 |18

After computation, we obtain the matrix above
AT-
Starting from the cell with the highest value and doing the “traceback”, we find: ATA

AT
Another local alignment with over-threshold score (20) is: AT
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Implementations of Smith-Waterman algorithm:

SSEARCH - Protein Similarity Search (European Bioinformatics Institute): http://www.ebi.ac.uk/Tools/sss/fasta/

Previously (now retired):

—  MPsrch (Edinburgh University): http://www.ebi.ac.uk/MPsrch/ [not available anymore]
— Scanps2.3 (Geff Barton - European Bioinformatics Institute): http://www.ebi.ac.uk/scanps/ [not
available anymore]

Popular algorithms have quadratic complexity (in the length of the sequences) in time and space. Variant of
Myers and Miller allows to produce alignments of pairs of sequences in quadratic time and linear space

II1.B.10  Global vs. Local
It is important to underline the behavioural difference between local and global alignment:

— pairwise global alignment highlights any overall similarity between two sequences
— pairwise local alignment highlights any local similarity between two sequences
o Two sequences can be very different globally (in their entirety), but they can still have very
stmilar regions
o From such local similarity, it is often possible to formulate interesting hypotheses about the
presence of certain motifs and therefore on the function of the analyzed molecules

It is also important to highlight differences between algorithms:

— Needleman- Wunsch algorithm:
o Global alignments
o Requires the alignment score of a couple of nucleotides or amino acids to be > 0
o Does not necessarily require penalized gap
o Alignment score cannot decrease between two cells of an alignment path
o Best alignment score is in a cell of the last row or last column of the alignment matrix

—  Smith- Waterman algorithm:
o Local alignments
Alignment score of nucleotide or amino acid pairs can be positive or negative
Gap penalty required to function effectively
Alignment score may increase, decrease or remain the same between two cells of an alignment path

0O O O O

Best alignment score can be found in any cell in the alignment matrix

II1.B.11  Significance

It is important to automatically evaluate the significance of the alignments found. How much are the
highlighted similarities significant and how much are they by chance?
For any pairwise alignment, the used measures are:

— Z: measure of how the found correspondence is different from the random one (better high Z)

— p: probability that the alignment found is not better than the random one (better low p)

— E: number of sequences in a database of random sequences with equal length of the query sequence
that have the score of the alignment with the query sequence greater than or equal to that of the
found sequence

a) Score Z

Generate a large number of permutations of one of the two sequences, align each permutation with the other
sequence and store the scores obtained
It is estimated

__original score — mean of scores obtained by permutations
~ standard deviation of scores obtained by permutations
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Z > b score that suggests significance of the alignment found between the two sequences

b) Probability p

Probability of finding, by chance, a score equal to or greater than some value S is:

p= 1— efk-m-n -exp(—A-S)

With :
m: length of query sequence
n: length of sequence found in the queried database
k and \: parameters dependent on the substitution matrix used and the queried database

Guide generally used to read the probability:

p < 107190 exact correspondence
107199 < p < 10770 almost equal sequence (e.g. alleles or with SNP)
107°° < p < 1071 sequences closely related, homology is certain or almost
10° < p < 10! sequences of species distantly related
10 < p probably not significant correspondence
c) Value E

Expected number of sequences in the database of random sequences with equal length of the query
sequence, that have the score of the alignment with the query sequence greater than or equal to that of the
found sequence

Guide generally used to read E:

0 <E < 1071 identical sequences (or almost)
1071 < F < 10710 sequences usually homologous
E < 10° good alignment
1 < F <10 often related sequences

Note that for £ < 1072 we have that: £ >~ p
http://www.ncbi.nlm.nih.gov/BLAST /tutorial /Altschul-1.html

I11.B.12 Database research

Classic programs that search for sequences in databases are FASTA and BLAST. The heuristic principle
that these programs use is the search for “words” in databases

A word is a short series of characters in the sequences of amino acids or nucleic acids. Normally, these words
are indicated with the term A-tuple (k = number of characters)

The foundational hypothesis of methods based on search of words is that related sequences share many
words

Sensitivity: is the ability to identify sequences related, although evolutionary distant. Increasing the
sensitivity, increases the number of matches observed, but decreases the speed of research

Specificity: is the ability to avoid false positives (i.e., sequences not related, but with a high value of
similarity).

Long words lead to increased specificity and reduced sensitivity: two evolutionary distant sequences do not
share anymore long words, but shorter words

In searching within databases, a compromise between sensitivity and specificity must always be sought
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Smith-Waterman - time: 10:00 min

CGVPAIQFPVLEGLERIVNGE

é N \ FASTA and BLAST are fast programs
L \-\ to search for biomolecular sequences
' in databases

RN

FASTA - time: 2:00 min BLAST - time: 0:20 min

COVPAIQOPVLEGLERIVNGE COVPAIQPVLEGLERIVNGE

e . N

R k.
N

N
NN
h."

L e
mEmErnaRdE O

II1.B.13 FASTA

FASTA (Lipman and Pearson, 1985), i.e. FAST-AIL, http://fasta.bioch.virginia.edu/fasta www2/fasta_list2.shtml

— In the classic version, it is an heuristic program that can search for global homology of sequences
— Two variants, LFASTA and PLFASTA, that can search for local homology of sequences

FASTA is specific but not quite sensitive
FASTA uses 4/ phases to perform the search
a) Phase la: k-tuple

Initially, create a positional table containing all the positions for each amino acid (or nucleotide) in the
query sequence and in each sequence in the database

Example:

Pasition 112 3| 4|5 6|7
Query I eliin=S
Sequence | F| L| W| R| T| W| S ’

Position 11 2| 3| 4| 5|6 i

Database ; -
Sequence X | S| W| R| T|w| T -

25
3
4,6

— @ =w||le| 4 m[s|—|T
~

The positional table can be built considering the position of the amino acids (nucleotides) taken individually
(k-tuple = 1) or in pair (k-tuple = 2)

In the case of nucleotide sequences, k-tuple is 4 or 6

Number of operations is proportional to the length of the query sequence

b) Phase 1b: offset calculation

Calculate the difference (offset) of positional values of each amino acid (nucleotide) between the query
sequence and the sequences in the database

F 1
Example: L 2||S| 1
- W[ 3.6 W 25
An| Diff. | Offset | common elements: S\W,R,T = al [RI 3
5| “7-1" 6
ey o T 5 T| 46
W| 32 L What” s the most common offset? 3 7
W | “3-5" -2
w | 62" 4 Offset of 1 allows alignment of 4 amino acids
W | 65" 1 (alignment score = 2, given by 4 matches and
o 2 mismatches
R| ™3 1 ) FILIW[R[T[W[s
T | “5-4" 1
—| SIW| R|T|W| T
T 5o 3 Offset
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The correspondent dot matrix :

12346867
FLWRTWS
s °
w \o ®
R Ne.

T \.\
W ® ®
T .\

As we proceed, we make growing the regions (traits of diagonals with match), =
interrupting them and starting a new one if the alignment score becomes
negative

The 10 best regions of similarity are selected for the subsequent analysis,
regardless if they belong to the same or different diagonal

@

Bioinformatics and Computational Biology

¢) Phase 2: evaluation of substitutions between nucleotides (amino acids)

The best 10 regions selected in the phase 1 are evaluated through the score
matrices (e.g. PAM250)

The subregions that contain the bases (amino acids) that mazimize the region
score are identified. These regions are called initial regions and their score is
called initial score, or INIT1

The aim is finding the initial region with the best score, to be used to create a
rank of the sequences in the database, in order to define which of them are the
most similar to the query sequence

d) Phase 3: joining of the initial regions

FASTA evaluates if it is possible to join together different regions of similarity.
The constraints to create the join are:

— Excluding any areas of overlap between regions

— Score above a “threshold”

— Introduction of a scoring penalty for each gap introduced to join 2 regions

The regions are joined if the cost to be paid is less than what is gained through

the reunion. The similarity score obtained by joining regions is denoted with
INITN

e) Phase 4: optimization alignment

Sequences with higher similarity are aligned to the query sequence using the
procedure based on a modified Smith-Waterman algorithm (then partial local
alignment). This allows obtaining an optimized score (OPT)

Originally built only for a restricted range (20 amino acids / nucleotides). Newer
versions do it throughout the whole matrix
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Score evaluation: obtained the final scores (OPT), FASTA estimates the statistical significance of the results

as follows:

It generates a statistically significant number of random combinations of sequences with the same
length and composition of amino acids (or bases) of query sequence

For each of them, it runs a FASTA alignment against a subset of the database sequences

It computes score mean (M) and standard deviation (SD), assuming the values are normally
distributed

It compares obtained OPT values with the mean value of the distribution of the scores of the random

sequences
OPTalignmen
SD7‘andom

the scores of the random sequences

— Mean,,. .
t random - measures how much the OPT value deviates from the mean of

Z — score =

II1.B.14 BLAST

BLAST (Basic Local Alignment Search Tool): http://blast.ncbinlm.nih.gov/Blast.cgi http://www.ebi.ac.uk/Tools/blast2/

It searches for best local alignment between a query sequence and the sequences in a database.
Developed and supported by NCBI (US National Center for Biotechnology Information) (1990)

Features:

Local alignments
Alignments with gaps
Heuristic

Rapid

Features of the algorithm:

While FASTA searches all possible words of the same length, BLAST limits the search to the most
significant words using a “preventive” filter

To calculate the score, in the case of proteins it uses the BLOSUM62 matrix
BLAST fixes the length of the word to:

o 3 (previously it was 4) for proteins

o 11 for nucleotides
BLAST follows several “phases”

a) Phase 1: Generation of words

It generates a list of words of length W (3 for proteins, 11 for nucleotides) from the query sequence

Example:
Query. .PQGAISEKI
PQG —
QG g
GA :
Al'S =
ISE

SEK "
EKI

Woord Tist

For each word identified in step 1, a list of all the associated words is generated

Using BLOSUMG62 substitution scores (PAM250 for nucleotides), similarity of all possible words is
evaluated
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— Example for the word PQG
o Score BLOSUMG62 of:
» PP,QQ GG=7+5+6=18
» PP,QQ GE=74+54+-2=10
» PP,QR,GG=7T+1+6=14

— A score is assigned to each 20° = 8’000 words that can be found in the database (similar calculations
for nucleotides: 4" = 4’194°304)
A threshold T is used to limit the number of analogous words (to be subsequently used to search in the
database).

Threshold T is usually chosen to reduce to 50 (the 50 most analogous) the number of words to be used
Example for the word PQG with a threshold 13

o PQG=18
o PQE—10
o PRG=14
O

The procedure is repeated for all the words with 3 amino acids (11 nucleotides)
In total, the words to be used to search in the database will be (for proteins): 50 * (query length — 2)

b) Phase 2: Find the words in the database

The search (exact) of the best analogous words in the sequences of the database is performed

Database sequences

_ A
Word list PR

"
1
t
)
¥
b
o

o

1
!
[
I
i
r
f
1
!
r
i
i

e

c) Phase 3: Hit’s extension

When searched analogous words are found in database’s sequences, they identify regions of possible local
alignment (without gap) between the query sequence and the sequences found in the database

The algorithm tries to extend aligned regions, without allowing _‘3 > ¢ E F .
gaps, and until extended alignment score does not decrease

In this way, we get alignments with higher score than the original —_t m_! t

one, called HSP (High-scoring Segmented Pairs)

= Example: Match:PQG<>PRG  Score: 14

Query seqguences: L LF PAG LY F
Database sequence: D WMP PRG LL N

HSP = X+(2+7)+ 14+ (4+ )R =28

Extension occurs considering, one at a time, the two bases (residues) immediately next to the current
alignment. If score increases, or decreases within a threshold X, the two bases are included, otherwise

extension stops

A HSP score is considered relevant (and selected) if exceeds a threshold value S. At the end, it is generated
the best alignment, according to Smith-Waterman algorithm, of query sequence only with the sequences of
the database selected (by the HSP)
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W, T, X, S are parameters of BLAST algorithm. Variant (two-hit method): as 90% of the time is due to
extension and alignment, try to extend alignment only when there are two independent hits on the same
diagonal less far away than a threshold A

Parameter choice:
— Usually T is set automatically (e.g. W = 3, BLOSUM62, T = 13; or with variant: T = 11 and A =
40)
— S is set through E (expected value of sequences that, in a database of random sequences with the

same length of the query sequence, would have score of alignment with the query sequence equal or
higher than S)

— Increasing S decreases F; default £ = 10

E-value: alternative interpretation
— E is equal to the number of sequences that we would expect to find if the database contained random
sequences
— The factors that influence the value E are:
o Number of sequences in the database
o Length of query sequence
— It is more probable to find at random a match in a big database

— It is more probable to find at random a match (of local alignment) in a long sequence compared to a
short one

— The probability of getting at random a value equal or higher than the obtained HSP is: p =1 —e &
—  p goes from 0 to 1
— When EF < 0.01, p-value and E-value are very similar

— A value of p-value of 0.03 means that there is 3% chance of getting at random a score equal or higher
than HSP (but we prefer to look at the E-value than the p-value)

Filters: BLAST has filters to skip regions with repetitions or low complexity (not applied to FASTA):
— SEG: filters low protein complexity regions
— DUST: filters low DNA complexity regions
— XNU: filters regions containing protein tandem repetitions

1 MAAKRTFCLIME D OOONOUOG I FPOCSOAP TASLLPRPYLSPAMS SWCENPTLLPYRIOD 60
1 MAAKIFCLIMLLGLSASAATAS IFPQCSOAP [ASLLPPYLSPAMSSYVCENPILLPYRIQD 60

61 ATAAGIIOIDIENER OO O TN T RICOED OO OGO R Y SOQOQFLPEN 120
61 ATARGILPLSPLFLQOSSALLQQLPLVHLLAQNIRAQQLOQLVLANLAAYSQQQQEFLPEN 120

121 QRGOGOOUECHENRGHPFS UL AAR YPROFLPFNULAALNSHAVVIOOGOGIPF SOLAAYS 160
121 QLAALNSARYL.OQOQOLLPFSOLAARYPROFLPFNOLARLNSHAYVOOQOLLPFSOLAAVYS 180

181 PRAFLTQQQLLPFYLHTAPNVCTIOCOODODOOOCOCOITNP ARF YQOPIIOGALY 235
181 PAAFLTOOOLLPFYLHTAPNVCTLLALAOLLPFDALALTNPAAFYOOPIIGOALY 235

Masked regions (XXX) in an amino acid query sequence

BLAST
) ) FASTA
“Standard” tool, used in practice
More sensitive in protein research More sensitive, in particular for nucleotide sequences

Global alignment (although BLAST for global

Local alignment . .
alignments exist)
Fast (on-line) Slow (e-mail answer)

. . Secondary analysis (or replaced with a BLAST with
First analysis ) ]
a more precise matrix)
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BLAST and FASTA are both heuristic
— They use a strategy that is expected to find most of matches, but sacrifices sensitivity to gain velocity
o They could not find existing matches
o They do not grant to find the best alignment between two sequences

Implementation examples:
— FASTA: http://www.ebi.ac.uk/Tools/fasta/ http://fasta.bioch.virginia.edu/
— BLAST: http://www.ebi.ac.uk/Tools/blast/ http://www.expasy.org/tools/blast

— You can download a local version: BLASTALL (http://blast.ncbi.nlm.nih.gov/): it allows to align
amino acid (or nucleotide) sequences in a FASTA format with a database defined by the user, giving
results also in tables (tab separated values)

— It is also available a collection of pre-computed BLAST results for each protein sequence in the Entrez
Protein database: http://www.ncbi.nlm.nih.gov /sutils/blink.cgi?mode=query

Other implementations: to speed up algorithm execution there are implementation:

— Parallelized
— On dedicated hardware
— On FPGA - Field-Programmable Gate Array (http://www.timelogic.com/catalog/752/biocomputing-platforms)

Comparisons in databases

—  Which type of sequence do we need to compare: DNA, protein, or DNA as a protein?

o If the query sequence is a sequence of amino acids or nucleic acids that code for protein, it is
better that we do the research at the protein level. So, you can point out more distant
homologies than with nucleic acid sequences

— Search at protein-level helps to identifying genes in evolutionary relationships, whereas search in
DNA helps identifying identical regions

BLAST programs /!\

— BLASTRP: searches a protein sequence in a database of proteins

— BLASTN: searches a nucleotide sequence in a database of nucleotide sequences

— BLASTX: searches a nucleotide sequence translated in all six possible reading frames in a
database of proteins (because the translation is based on codons, triplets of nucleotides [=3 reading
frames|, that are potentially read one way or the other: 3 %2 = 6)

— TBLASTN: searches a protein sequence in a database of nucleotide sequences that are automatically
translated into all siz possible reading frames

— TBLASTX: searches translations in all six possible reading frames of a sequence of nucleotides in a
database of nucleotide sequences dynamically translated

BLAST Programs

ONA DATABASE
ATCGCCT.. \ database virtual
]  GGCTATT. translation
BLASTN| ﬁ TBLASTN

ATCGGCA -/
(DNA seq.) /
MEKGQLVF’
:?T\*—J -/ (Prot. seq.)

>

o

a
translation =

products
\‘ SKGFLIDG...
BLASTX . CVTHLAGL..| PROTEIN DATABASE

'JJY

BLASTX vs. TBLASTX: the protein database contains only proteins that have been observed so far, whereas if
I compare all possible translation I will find all possible matches, but some of these matches may not be possible
in nature, and be thus irrelevant. BLASTX generates false negatives, while TBLASTX generates false positives.
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Other BLAST tools:

Bioinformatics and Computational Biology

— MegaBLAST: it is an optimized program to align nucleotide sequences that differ slightly and therefore
they could originate from sequencing errors. It may become 10 times faster than other programs
depending on word size and it manages efficiently big sequences

— PSI-BLAST (Position Specific Iterated BLAST): designed for analysis of protein sequences, it
increases the sensitivity of the algorithm using iterative procedure

— BEAUTY (BLAST-Enhanced Alignment UTilitY): interface which adds information to the output of
BLAST with text and graphics. http://searchlauncher.bcm.tme.edu/seq-search /protein-search.html

Blast2Seq:

— http://blast.ncbi.nlm.nih.gov/bl2seq/whblast2.cgi
— http://blast.ncbi.nlm.nih. gov/docs/align_ seqs.pdf

Program | blastp | Manix | BLOSUMGZ v

Farameters used in BLASTHN program only:

Reward for a match:| Penalty for a mismatl:h:f_

O Use Mega BLAST Strand o_ption: Motapplicable v View option: Standard ) v
Iasking character option | X for protein, nfornuclectide | Masking color option | Black ¥

[ Show CDS translation

Cpen gap [11 | and extension gap |1 | penalties

gap x_dropofff_SD | ezpect :_10.0 | word size |3 | Fiter
Zequence 1 . .

Enter accession, GI or sequence in FASTA format from:|0 to:0

>hTEP

MDONMNSLPPYAQGLASPOGAMTPGIPIFSFMNPYGTGL TPOP TIONTHILS
ILEEQQRQOOOOOQOQOOOOO0OO000Q0000000Q0000Q0000AVLAL
AVOOS TS OOATOGTIGOAPOLFHSOTLTTAPLPGTTPLYPSFUTPMTEIT
PATPASESSGIVPOLONIVSTVHNLGCELDLETIALRARMAEYNPERF LAY
|IMRTREPRTTAL IF 5§GKNVCTGAKSEEQSRL AARKY ARVVQRLGFPAKF

ot upload FASTA file | |

Sequence 2

Enter accession, GI or sequence in FASTA format from: 0

>dTEF

MDOMLEPNFSIPS IGTPLHQMEADQOQIVANPYTHPPAVIQPDILMPAPGS
SEVOHQQOOOOSDASGEIGLFGHEPSLPLAHEQHQS TOP S AT OO0
QOLOSQAPGGGGI TP OSMNOPOTPOSNMAHNMP NS ERSVGGIGAGGAGD L
LENIHQTHGPSTPHTPATPGIADPGIVPQLONIVS TVNLCCELDLEKTAL
HARMNAEYNPERF AAVINRIREPRTTALIFSSGEMVCTGAKSEDDSRLALR

or upload FASTA file | |[(CStoglia.. |
Cleatr Input

o0

Ezample with input the sequences of protein (transcription factor) TBP (TATA binding protein) of human and Drosophila
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|

WOTEERitscore and expect value are caloulated based on the size of the nr database.

Score = 318 bhits (816), Expect = 2e-85
Identities = 160/178 (89%), Positives = 169/178 (94%), Gaps = 07178 (0%)

Query 160 GIVPOLONIVITVNLGCELDLETIALRAFRNAEYNPERFAAVIMNRIREPRTTALIFSSGEN 219
GIVPFQLONIVITVNL CELDLE TAL ARNAEYNFPERFAAVIMRIREFRTTALIFSIGEMN

Zhjct 175 GIVPOLONIVATVNLCCELDLEEIALHARNAEYNPERFAAVIMRIREPRTTALIFSIGEM 234

Query ZZ0 VCTGAESEEQARLAAREYARVVOELGFPAKFLDFEIONMVGSCDVEFFIRLEGLVLTHOO 279
VCTGAKIE+ SELAAREYAR++OELGFPAKFLDFEIQONMYGSCDVEFP IRLEGLYVLTH

Zhjct 235 VOTGAKSEDDSRLAARKYARIIQELGFPAKFLDFEIONMVGSCDVEFPIRELEGLVLTHCHN 294

Cuery &80 FISYEPELFPGLIYRMIKPRIVLLIFVSGEVVLTGAKVEAEIYEAFENIYPILKGFREE 337

FISYEPELFPGLIYRM++PRIVLLIFVSGEVVLTGAEVE EIY+AF+ I+PILE F+E
Zhjct 85 FASYEPELFPGLIYRMVEPRIVLLIFVIGKVVLTGAKVREOEIYDAFDEIFPILKEFEE 352

In the Blast2Seq output the aligned segments are highlighted

In the example were aligned the C-terminal parts of the two sequences, with identity of 89% (the famous
“saddle domain” by which TBP interacts with DNA, which is highly conserved with respect to the remaining

of the sequence)

I11.B.15 Motif search

Motifs are regular combinations of secondary protein structures associated with particular functions. The

presence of the same motif in different proteins may indicate a similar function

The search for protein motifs within genomic sequences can:
— Study the diffusion of specific motifs in different genomes
— Identify new genes structurally similar to known genes

Distribution of motifs in different genomes
- S.M.A.R.T.: Simple Modular Architecture Research Tool (http://smart.embl-heidelberg.de/)

LITTE R e v 5.
SMART -

— In S.M.A.R.T. the most important protein motifs are noted and described together with their
localization and distribution in different genomes

— The study of the distribution of motifs in a genome and in different genomes allows us to understand
the evolution of the motif and its functional importance in cellular system (useful for genomes that
are not fully characterised)

Identification of new genes structurally similar to known genes
— Protein motifs are the ideal probes for genome screening in search for unknown genes
— The motif-probe can be used for:
o Search new members of a gene family

o Search for the presence of a known gene within an organism in which the gene has not yet been
characterized (ortholog sequence search)
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Example:

Bioinformatics and Computational Biology

— Search zinc finger motifs (a motif that binds DNA, a very conserved one) in Fugu Rubripes genome
(puffer fish):

O

O

Use as probe the zinc finger motif of an organism similar to Fugu
“Blast” this probe against the Fugu genomic database (NCBI BLAST — TBLASTN)

Use GENSCAN to predict position of genes and their intron-exon in genomic sequence given
by TBLASTN. If it exists, the result to consider is the one that covers the whole region with
the motif identified by TBLASTN

Validate the result of GENSCAN with BLASTP on Fugu Rubripes or other similar organisms

bly SCAFFOLD 3361, whole genome

Théo Saulus

endy | CAABO100335361. 1 JFugu rubripes whole genome shotgun
R ——
FECun secuence

Length = Z6503

Soore = 66.6 bitz (161), Expect = Qe-12
Tdentities = 26/27 (96%), Positiwves = 27/27 (100%)
Frame = +2

Query: 1 CAVCHNDTASGYHYGVWSCEGCEAFFER 27

CAVC+DYASGYHYGVWSCEGCEAFFER
Shjet: CJ\.VC HDYASGYHYGVWICEGCELFFER

remb | CAABDIO01E05.1| Fugu rubripes whole genome shotgun
shotgun sequence
Length = 73025

Score = 66.6 bits (161), Expect = Se-12
Identities = 2&6/27 (96%), Positives = 27/27 (100%)
Frame = -3

CAVCHNDYVASCYHYGVWSCECCHAFFER 27
CAVCH+DTASGYHYGWWSCEGCEAFFER
Sbhijct: 71601 CAVCHDYASGYHYGVWICEGCEAFFER 71521

Query: 1

bly SCAFFOLD_1203, whole genome

TBLASTN result of zinc finger motif against genomic database of Fugu Rubripes

s = 1 T ase, LTI E:

TCCACGTTC TG AGCATTTATTTTTGTTT G CATTAAC TTCR
GTGAL L T T T T T A T T T TG TG T T TCC T TG T C T T T T TC AL AGTATGEGEA T TC T GEC ACT
| TT GG TGGATGTGGAACATGAAGTACAGGCCCAACCCCARAAARGGC TG TARAGGGAGAGAAGACTTGAGST
C A AT A TACC A TAATACC AT GA LA GO AR A A A TTTT TS TTTACC ATTC TTAT TG TTSATAGLA
A T T T TAA T TC T TG TG T ITC TAT T T TAGGAGG TGATGGGC TCCTGCATT TGGG TGATAGAGALCCTT
| C T GAGACGGATTCCCGACTC TT TGAATG T TC TC TATCAGATGTTTGACTGCGATC TAATTCAGGACTTGA
T T T AT A T T AT T S S A A L G L A A TS A A A S TGATE G A TTC TGO TTTCC AR
TTGCATATGC TTCGTTT TG T TG TC TAC AL AT TATAG T TAGATATATAGTTATATC TATATATGTTALATT
T - TTAAAC T GGACAMCCTT G CCTTCATACTGGC TT TS TT G TTTATGC TTTGATATAGTTTGATACZAGT
CTCATC AR LGS AT T AT A S A TAT TAC TT G TAAT e TTTGATGAC AC ATAGSTEC A TGGGE GGG G GG
GG A G A G A A G A A G A G A G A G A GG A G A GG A GAG G A GAGGAGA GG AGAGGAGAGGAGGAGACAAT
ACCCAGZAGTGTTCCAGCATC C TAGTGATCAGEC GG TTTC TGGFACACCGEFCAGCCTCGGC I TCTAGCAGT

Fun GEMSCAR

Cleor Input

Submit the genome sequence identified by TBLASTN to GENSCAN
(http://genes.mit.edu/GENSCAN.html)
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) GENSCAN output - Mozilla Firefox
Fil= Edit Wiy Hiskary Eookmarks Yahoo! Tonls Help

heep: frgenes. mit.edufcgi-binfgenscanw .. cgl

=9
Tery
-03 Plyh - ¥ K [ i.
-0 Prom + 4an 5. 36
+ 13751 13835 85 a0 ag 142 0. 008 L B
.02 ITntr -+ 153F28 15455 118 (% 3 20 61 0.010 —F . !
F.03 Intr + 16361 163279 119 113 LiE 3 39 0.4200 6.
+
I

F.01L Indt

3.04 Intr 16550 16946 397 81 64 430 0.455 33.5
.06 Intr 17998 18117 120 &1 65 151 0.813 12.5
125 105 178
28 81 a1

0. T8
0.
{7y ) [ 139 0.
.
.

TGO

+
-7 Intr -+ 181904 A1E502 09
-08 Intx -+ 19085 19223 13D
-9 Intr + 19961 200931 133
-10 Intr + 21431 21614 184 57T 93 316
+
+

&7 4 146

menososnleon o R
HENESSRIRN R R

-11 Term 21691 21928 238
12 PIyh 23711 23716 [3

06 Plyh - 24024 24019 (7
=03 Term — 22838 24169 (11}
-4 Tntr - 25483 25307 ire
-03 Intr - 25742 25564 119
-2 Tntr - 26182 26077 inG
-0i Intr -— 26381 26278 104

Select the gene identified in the region where TBLASTN found the zinc-finger motif

BoRR R R R

— Init: Initial exon

— Intr: Internal exon

— Term: Terminal exon
—  Prom: Promoter

— PlyA: poly-A signal

There is an internal exon of the candidate that perfectly matches at coordinate 17404-17597, which contains
the 17507-17587 previously identified by TBLASTN. So this exon probably encodes the protein sequence

GENSCAN predicted genes in sequence 11:28:45

1 »

L 1 | 1 | 1 1 1 | 1 | 1 1 1 | 1 | 1 1 1 | kb
LK1} 1.0 20 a0 4.0 A0 Lent] 74 B0 9.0 0.0

N T B
1 E mm @ 5 |

L 1 | 1 | 1 1 1 | 1 | 1 1 1 | 1 | 1 1 1 | kb
10.0 1.0 120 130 14.0 15.0 160 17.0 18.00 19.0 2000

N W

1 L I L I . 1 . I . I L 1 -
0.0 210 220 230 24.0 250 26,0

. Orptinaal exon

|:| Suhoplimal exon

|{_(.1||r-- ’ Initial . Inbernal . Termminal ‘ Single-axon
% oxon axon X0l pena
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The protein predicted according to the computed codifying sequence is submitted to a BLAST with protein
databases (BLASTP) of the analyzed organism (Fugu) and of analogous organisms to determine if it is an
unknown gene sequence. In this case, seek orthologous sequences in other organisms

a hittp: / Avww.ncbi. ih.goy. 'Blast.cgi - Miciosoft Internet Explorer
e e e
I_couegamenti"’| Inciizze |7 it e ncbini. i gov/ELAST /Blat cgi#15741033 = .f>vai'|| = ”| File phedfic: ”n
r'}gi|33386531|emh|CADQSUDE.J! retinoid ¥ receptor heta [Takifugu rubripes] -:J
Length = 370

Score = 135 bits (339), Expect = 4p-33
Identities = 102/381 (26%|, Positives = 172/381 (45%|, Gaps = 76/381 (10%)

Duery: 275 CAVCHDYASGYHYGVWSCEGCEATFERIIQTGONDYICPATNQCTIDENERKSCOSCRLE 334
C +4C D +3G HYGV+3CEGCE FFER+++ + ¥ C +C +0E +R CQ CH +
Sbict: 34 CVICGDRISGEHTGVYSCEGCEGIFERTIVEEDLS-YTCRINEECLVDERQRNRCCYCRYQ D2

w

Query: 335 KCYEVGMTECGERE------------ ERESSRNPOMREGTROASDSRFTRPSELSCETVG 362
BC +GH + +++ E 30+ A++ + +EL v

Sbijct: 93 RCLANGHEREMVQELRCRNREREGELEFEVSVIEEMPVERILAAETIVEQETELHIDIGWS 152

o

PFDALHPSCLTIEQLINTILEAEPPEIYLEEDHEGPVTELS IMMSLTNLADEELVERITY 442
++ H + S ADF+L ++ W
AGNSPHD A WENICQTADKQLFALVEY 173

Duery: 38

w

Shiject: L5

]

ARKIPGFVELSLLDQVHLLECCULEVLMIGLNVRSVDHFGEL IFSPDLILIREEGECVOG 502
AE4IP F EL L DOV LL T E+L+ RE++ +H++ 4L ++ 4+ G
AERIPHFSELFLEDQVILLEAGUNELLIASF S HRIINGEDGVLLASEL -~ -QRDZINI LG 235

Duery: 44

o

Bhjct: 17

w

Query: (503 FREIFD-—————ss—mmemns HLIAATSEVRELELOREEVWCLEAMILLNSHMCLEFSEG 547
IFD +L +++B++++ + B CL+AHL N + 3+

VGLIFDRENVOS AEVGATIFDEVL TELVNENRD HOMDETELGCLRAIVLFNP D-AKGLEES 254

=

Shjet: I3

(=7

Duery: 548 SEELQSRNELLELLDTVTDALVWAIAKTGLTFRDOVTRL AHLLMLLSHIRHLSNEGKDHL 607
ZE RE+ L+ L ++0 E L LL+ L 4B + E ++HL

SEVELLREEVYASLE--————---—- LYCEQRYPEOOGRF AKLLLRLPALRSIGLECLEHL 344

]

Bhjet: 29

m

HCHENENMVELYDLLLEMLDA 628
B+ P+ L+EML+A |

2] [ [ et

Duery: 60

Protein identified by BLASTP in Fugu protein databaseshows low homology with protein calculated by GENSCAN

Is it a not yet identified gene (with its protein still unknown)?
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r Fgi| 16151550 emln | CACS55459.1)| eStrogen receptor betad protein [Panio rerio]
Length = 553

Score = 592 bhits (1785), Expect = 0.0
Identicies = 357/540 (66%), Positives = 413/540 (76%), Gaps = 15/540 (2%

Ouery: 116 VASTPHEMNOPLLOLOFVDZIRLGARVVEPILGASLET-——-30PICIPSPYTDLNHDFSG 171
++ P+ PLLOQLO+VDE R+G  ++3PI  +3  + + PICIPEPYTDL HDF3
Shice: 1 NSEYPEGDSPLLOLOEVDIGRVCGHILSPIFNSS5PSLPVINHP ICIPSPYTDLGHDFST 60

Query: 17

[

IPFYGPTIFGYASPAISDRASTHRANSPALF TENEEEINEEENEEESOPRPOHGOP TOSP 231
+PFY P + GY++ +20 +3+ +3+3P+LFT QRGQ
Sbhijct: 61 LPFYSPALLGYATEPLEDCISVRQSLAPTLFUPPHIHVISLTLO--0Q3RLOONHATSGT 118

[

WAELSPLDRDEDSELSVGEITRERSQESEEAVVIIGGRADLHYCAVCHDTASGTHYGVIS 291
WE+F I +t K +R  ++EE W3 GEAD+HYCAVC DYASGYHYGVUS
Sbject: 119 WTEHTPHDHVEEEN---3KPLVERVADTEETSVILRGEADHHYCAVCSDYASGYHYGVIIS 175

Query: 23

[

CEGCEAFFERIIQTGOND Y ICPATNOQC TIDFINRRESCOSCRLEXCYEVGHTECGMREERR 351
CEGCELFFER3IQ G NDYICPATNQCTIDFNRRESCO+CRLEEKCYEVGH ECGHR+H+R
Zbjot: 176 CEGCEAFFERSIQ-GHNDYICPATNQCTIDENRRESCQACRLEXCYEVGMMECGLERDRS 234

Query: 29

Query: 352 3--3RNPOMRRGTROASOZRPTRPSEL---3GPTVGPTDALHPSQLTSEQLINTILEAER 406
3 R Q4R E++ RTP B F L+ E+LI+ I+ELEFP
Shjet: 235 SYOORGACOERLVEFSGRMEMTCPRSCEIKSIPRPLSGNEVVRISLSPEELISRIMELEP 294

Cuery: 407 PEIYLMEDMEGPVIEASIMESLTNLADKELVEMITWARKIPGFVELSLLDOVHLLECCUL 466
PEIYLMEDME P TEA++MESLTHNLADKELVEMI+WARKIPGFVELSL DOVHLLECCHL
Sbijct: 295 PEIYLMEDMEEPFTEANVMNSLTMNLADKELVEMISWARKIPGFVELSLFDOVHLLECCUL 354

e

Query: 467 EVLMIGLMWRSVDHPGELIFSPDLALIREEGICVQGFIEIFDMLIAATSEVERELELQREE 526
EVLM+GLMURSV+HPGELIFSPDLILIR+E 3CVQG  EIFDML+AATSE RELELCREE
Shjct: 355 EVLMLGLMWRSVINHPGELIFSPDLALIRDESICVOQGLVEIFDMLLAATSRFRELELQREE 414

Query: 527 YVCLEAMILLNSNMCLSPSEGIEELQSRNELLELLDTVTDALVWAIAKTGLTFRDOYTRL 586 s
TVCLEAMILLNSNMCL 3EG E+LQ3R+KELL LLD4VTDALVWAI+KTGL4F+ + TEL
Shijct: 415 YWCLEAMILLNSNMCLGSIEGGEDLOIRIKLLCLLDSVTDALVWAISKTGLIFOORITRL 474

Query: 587 AHLLMLLSHIRHLINEGMDHLHCMEMFEMNMVPLYDLLLEMLDAHIMNHSSRLSHRPPOODLA 646
AHLLMLLSHIRH+ZNEGMDHLHCHMENE MVPLYDLLLEMLDAHINHZSRLEH P+ b
Shjet: 475 AHLLMLL3HIRHVSNEGMDHLHCMKMEKMVPLYDLLLEMLDAHIMHZISRLSHSGPRAPAL 534

Protein identified by BLASTP in protein database of Danio rerio (another fish) shows high homology with the protein
calculated by GENSCAN

A new coding gene in Fugu, homologous to a Danio rerio gene, has been identified!

II1.B.16  Quick sum up

DNA : PROTEIN

miBNA Protein
4 NUCLEOTIDES

©
)
o]
g MPOFVINS
|
N\
|

g1 | 340073 ceb i GO05S46.2| Homo mapisna tuzoc
protein §53 (Li=Framsani ayndroos)p (TPS3], =RRA

AT T AT R A T T O R G T T T TR D ARG RGO TGO RGL RO T TRAT LS 2” AM]NG AG‘]DS
T T A TG T T AA A T Lo O G TARRRLG T TT T AGTT
TCTREGICACCET D AGEGRGCAGGT AGC TEC T GG T Cea b

B T e ol e sy 1| BAOT3E | ref [1T_000537.2) tuma: protein p83 [Homs
ERATTRGC AR CREAC TELCTICCGGETCAC TRCCATS GAGGMCOGCAETCN rapisnal - :

R T T R G T G R e e O T T A G T CAG L AR R TR T T T TCAGRI CTR T EakAR. MEEFQSOFSVEPFLSJETF SDINY LLFENNY LS LPSJAM DL MLS FOOIEgN
CTAC T T AR AR A A LT T T OO T T TROOG TOO DA =R A TR AT AT FTEORGFOEA P RMFERAFRVAFPA P AAFT PRA PAPAFSKF LSS SYRSTRTYIGS
TTGATEC TG TOCC CleE Al AT AT TR A TRt T e T TCACTGAA LR DORGET O R YIRS LG TAR U TC T S PALNEM PO LA TEP Y LN VIS TR P PO TRVAA
AT A D T O A T A GA G LT BT L OO S PTG G C O T PR T CAG LA MR I ¥ NS ORMTE VRACPHHEPC S DS DG LA PPN LI FVE CHLAYEY LODRHTT
T LT AR GG =G DL O T GL AT CAROC D COT DT GAEI O C TS TERTOTTIT RHS WY TP PE VG COT T TH Y MRS SO HGGENRRP I LTI ITLE DS SGHLL
T T T O DA A D T A O RS A TAC S ST T O T C TS REC T T T TG GANS VR AL PR AR TEE LN L REEGEFENEL FRGSTERRLFENT I SSRET
CRT I hACRGC R RS TCT ST GAC T TR AL T A TOC CCT GO CTCRACRAS EENFLOGEY FTLIRGRERFE MR E LA FLY CAQRGKE PSSERAHSSHLES
ATG T TT TeC CARC TG DC ARG AL LT L O TG TR AGT TG TEF T TRAT TCCALA KEIOETIRMEELMFETEGEDS D

DO Lo e AT S RO G DG ATGERPCTACR . . - D oulh oot

o TECA T GA B AS C oG L AR TCAGRT ST AGE CTCSARC DT CET O TRAGTER
L A ¥ E E F Q 5 = r = v E ¥F P L. = 2
DHA: SERAACATTTTCAGACCT ATGERAAS TACTTE CTGRRARCRACGTTETE TE
i ECT XS BOL OROKEOLORR EUM WO LTS
CifA: EOCCT TR CR TOCCAAGC A TG AT GRT TTGATRC TETOCC CERRE GRTAT
i P LUEOS QA M B D LM LoX P B B T
DHA: TERACRATOETTCACTRARGACC CAGETCCAEATGRAGCTE CEAGAATECE
BE:E Q. M OF TOE DOP G FOD KA P R.OM R
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A simple sequence of letters does not say much...

MACFPTPFGGSLDIWAITVEERAKHDOOF HSLKPISGRITGDQARNFFFOQSGLPOPVLACIWAL ADMNNDGRMDOVEF SIAME
LIKLELQGYOL PSAL PPVYMEQOPY AISSAPPFGMGGIASMPPLTAVAPVPMGSIPVWVGMSPTLYSSYPTAAVPPLANGARP
PVIPLPAFAHPAATLPKSSSF SREGPGSALNTKLOKAQSFDVASYPPYAEWAVPQSSRLEY RQLFNSHDKTMSGHLTG
POARTILMOSSLPQAGLASIMNLSDIDODGKLTAEEFILAMHLIDVAMSGOPLPPYLPPEYIPPSFRRVRSGSGISVISSTS
VDARLPEEPVLEDEQQGLEKKL PVTFEDEKRENFERGHLELEKRRQAL | FEQORKEQERLAGI FRAFQFRKERERQEQE
RRROLELEKQ FKOREI FEROREEERRKEIERREAAKREL FRORCH EWERNRRQEL L NORMKEQEDINVLKAKKKTLEFE
LEAI NDEKHCOLEGK] QDIRCRLTTORQEIES TNKSRELRIAEITHL CGQOLQE SQOMLGRLIPERKCILNDOLKOVOQNSLHR
DSLWTLKRAL FAKEL ARQHL RDOL DEVEKETRSKLQEIDIFNMNQLKEL REIHNKCOLOKOKSMEAERL KOREQERKIIELE
KOKEEAQRRAQERDKQWLEHVROQEDEHORPRELHEEEK] KREESVKKKDGEEKGKOEAQDKLGRLFHOHOEPAKPA
VOAPWS TAEKGPLTISAQENVKNYYRALYPEESRSHDEITIOPGDIVMVYKGEWVYDESQTGEPGWLGGELKGKTGWFP
ANYAEKIPENEVPAPVEPVTDSTSAPAPKLAL RETPAPLAVTSSEPST TPHMWADFSSTWPT STHNEKPETDNWDAWAAD
PSLTVPSAGOLRORSAF TPATATGSSPSPVLGOGERVEGLGARAL YPWRAKKDMHLMFNENDVITVL EQQDMWWFGE
VOGOKGWFPKSYVKLISGPIRKSTSMDSGS SESPASLERVASPAAKPYV SGEEFIAMYTYESSEQGDLTRFQQGDVILYTH
KDGDWWTGTYGDRAGYFPSNYVRLKDSEGS GTAGK TGSLGKKPEIADVIASY TATGPEQLTLAPGOLILIRKKNPGGW
WEGELQARGKKROIGWFPANYVELLMPGTSKITPTEPPKSTALAANVCOVIGMY DY TAGNDDELAFNKGQINVLNKEDPD
WWRGEVNGONVGLFPSNYVRL T TDMDPSQOWCSDLHLL DML TPTERKRQGY IHELIVTEENYWVNDLQLVTEIFOKPLMES
ELL TEKEVAMIFVMWHELIMCHIKLLKAL RVRKKMSGEKMPVEMIGDILSAQL PHMOPYIRFCSROLNGAALIQOKTDEAP
DFKEFVERLEMDPRCKGMPLSSFILKPMORVTRYPLIKNILEN TPENHPDHSHLKHALEKAEEL CSOVNEGVYREKENSDR
LEWIQAHVOCEGL SEQLVFNSVTNCLGPRKFLHSGKLY KAKNNKEL Y GFLFNDFLLLTQITKPLGSSGTOKVESPRSNLO
YEMYKTPIFLNEVLVKLPT DPSGDERIFHISHIDRVY TLRAE SINERTAWVOKIKAASELYIETEKKKREKAYLVRSQARATGI
GRLMYNVWEGIELKPCRSHGRSNPYCEVTMGSQCHITKTIQDTLNPKWNSNCOF FIRDLEQEVLCITVFERDQFSPDDFL

©—© bbb € D€

..using, however, one of the many tools available on the Internet for the analysis of protein sequences, it is

possible to know if the protein contains conserved domains, which are present in other proteins, whose

function is well know

Bibliography:
— Ewens WJ, Grant GR. Statistical Methods in Bioinformatics, Springer. 2001.
- Principles and Methods of Sequence Analysis: http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=sef& part=A166

III.C Multiple alignment of protein sequences [add.]

See slides
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IV. TECHNOLOGIES FOR MEASUREMENT AND ANALYSIS OF GENE EXPRESSION

IV.A Measurement of genetic expression (19 Oct.)

IV.A.1 Introduction
From genes to proteins: the genetic information is encoded in the DNA

promoter and
regulatory
sequences
Gene A Gene B DNA

transcription transcription
e e TP

mMRNA A M
]
translation translation
- s e T - A
Proteina A @’ Proteina B ﬁ
e L=——0 -

L’f’f’i‘f‘f’ _______ & Jolding

docking

Cell genes code for a “pool” of biological information

Genetic expression: conversion of coded information in a gene; for coding genes, first in messenger RNA
and then in protein
Not every gene is always necessary for the cell life

—  Only constitutive genes are always expressed

— Other genes are expressed only when they are necessary

Gene expression is regulated by the cell necessity: environment conditions and functions necessary to be
performed (e.g. genes for lactose synthesis)

In multi-cellular organisms:
— The environment of a cell is the organism itself

— Starting from the same cell, the “differential gene regulation” mechanism causes the creation of
different specialized cells (each one with the same DNA)

The genetic information is the same in every somatic cell of an organism (unless external factors, i.e.
mutagens, change it). It specifies the nature of all proteins in the organism

The genetic expression, and so the protein synthesis, is different depending on the cell type and the answer
from the environment (the state of the cell)

The transcriptome is the complete set of gene transcripts and of their levels of expression, in a particular
type of cells or tissue, in well-defined conditions

Only about 20% of the transcriptome is expressed by a cell

N.B. The transcript levels do not necessarily translate in protein synthesis or activity (some transcripts are
not translated; some translated proteins “do not function”). However, the quantification of the transcriptome
in certain types of cell is a good approximation evaluation of the functional activity in a cell

Knowing genome and genes is not sufficient to understand how a gene, a cell, an organism works

Théo Saulus Page 95 of 204 Politecnico di Milano, winter 2021



Prof. Marco Masseroli Bioinformatics and Computational Biology

To understand biological organisms in their entirety (and complexity) it is necessary to study:
— gene expression and regulation
— synthesized protein functionality
— quantitative occurrences of metabolites
— effects of gene defects on organism phenotype

Systems biology: study of interactions between components of a biological system and how such interactions
induce functions and behaviour of the system

For functional analysis of genomes, modern methods exist:
— Transcriptomics
— Proteomics
— Metabolomics
Usually these methods use high-throughput procedures requiring relevant activities of data managing and

analysis. The objective is to identify components of the system (i.e. transcripts, proteins, metabolites) and
their interactions and functions

These approaches of genotyping (determine the genotype and its components of an individual /organism)
must be correlated with, and completed by, phenotypic analysis of model organisms and cells in vitro

IV.A.2 Gene expression analysis techniques

After sequencing (knowledge of the sequence) and structural annotation (knowledge of components: genes,
regulatory elements, ...) of genome, transcriptome analysis is a very important field of the functional
genomic science

How to measure the gene expression?

Methods to measure the expression level of a single gene at a time: RT-PCR (Reverse Transcriptase
Polymerase Chain Reaction)
Main analysis techniques of the whole transcriptome are:

—  ¢DNA microarray
—  Oligonucleotide microarray
— SAGE (Serial Analysis of Gene Expression) [Additional mat.]

SAGE is the only technique that can provide an exact quantification of the transcript produced by a gene at
a certain time, while the other techniques (especially the microarray ones) are relative quantification between
multiple genes in a cell.

1980: RNA analysis of one or few genes at a time:
— Northern blotting
— quantitative PCR (Q-RT-PCR or real-time PCR)

1995 - ... RNA analysis of the whole genome
— Molecular biology techniques
— Micro / Nano technologies

— Computer science: high density (potentially measures of cell whole genome), big data

Two main technologies of DNA microarrays:
— ¢DNA spotted arrays (Schena et al., 1995)
— Oligonucleotide arrays (Lockhart et al., 1996)

IV.A.3 Northern blot — Single transcript analysis

Northern blot: laboratory technique to study genetic expression, by finding the RNA (or isolated mRNA)
in a sample

— Gene expression: quantifying the level of abundance of a transcript in a single sample
— Gene regulation: behaviour of the transcript in comparison test-control
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Northern blot: Transcript analysis (mnRNA) (video: http://www.youtube.com/watch?v=KfHZFyADnNg)

Southern blot: DNA analysis (video: http://www.youtube.com/watch?v=ftkdAbV_ 5gE)

Western blot: Protein analysis

IV.AA4

RT-PCR — Analysis of a single transcript

The polymerase chain reaction (PCR) is a laboratory technique exploiting DNA replication to amplify
a single or a few couples of a specific sequence of DNA, up to ~10 kb long, but also up to 40 kb long, by
synthesizing billions of couples (http://www.phgfoundation.org/tutorials/dna/4.html)

PCR is based on thermal cycles of heating and cooling of a solution where the replication reaction of the
DNA occurs (Good video: http://www.youtube.com/watch?v=_YgXcJ4nkQ)
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The reverse transcription polymerase chain reaction (RT-PCR) is a variation of the PCR, in which
an RNA helix firstly is reverse-transcribed in its complementary DNA (cDNA), by using the enzyme reverse
transcriptase, and the resulting cDNA is amplified by using traditional PCR, or real-time PCR, made in a
thermal cycler for automatic time and temperature control

RT-PCR must not be confused with real-time polymerase chain reaction, or quantitative PCR (Q-PCR, or
qRT-PCR)

Thermal cycler for PCR
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IV.A.5 Cloning with plasmids

Another laboratory technique to replicate pieces of DNA uses plasmids (extranuclear DNA) of bacterial (e.g.
E. coli) as vectors to clone DNA sequences

DNA fragments to be cloned (exogenous to the bacterium used as a carrier) are inserted in the DNA sequence
of the plasmid, using restriction enzymes to cut the DNA of the plasmid and the DNA ligase enzyme
to bind to the plasmid DNA the DNA fragments to be cloned, creating, in this way, recombinant plasmid
(video: http://www.youtube.com/watch?v=acKWdNj9360 and http://www.youtube.com/watch?v=x2jUMG2E-ic)

IV.A.6 DNA microarrays

Miicroarrays: orderly and miniaturized arrangements of fragments of DNA with known sequences on solid
support

Every position contains a fragment of DNA specific probe, complementary to the transcribed sequence

When the probe fragment is placed in presence of the complementary fragment, the test (marked with
fluorochrome), they will tend to pair with strong interaction because of complementarity

During scan, the amount of fluorescent signal arising from a specific position in the array is directly
proportional to the amount of the correspondent transcript in the biological sample used

RNA Trageents wilh fluaressent thgs Irom saemnple to be tested

FRHA iragment hybridizes with DA on GeneChip® array

http: //www.phgfoundation.org/tutorials/dna/6.html

Applications: not only measurement of genetic expression:

— Measurement of abundance of a genetic transcript
— Characterization of a gene sequence (i.e. exons / introns)

— Characterization of alteration of the number of copies of a given gene or DNA
sequence (i.e. due to chromosomal mutations of duplication)

— Characterization of DNA-proteins interactions
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DNA microarrays: principle and main steps:

1. Building of the microarray (solid holder where thousands of sequences of different genes, called probes,
are firmly placed, in well-known locations)

2. RNA full extraction from the cells to be examined (test)

—  Retro-transcription to cDNA (coding DNA), if needed
—  Amplification and marking

3. Hybridization (of the test) to the microarray — the
4. Fwvaluation of gene activity

Since they allow to determine the profile of expression of the cell in a given state, it is also said that
microarrays allow expression profiling

Step 2

Step 1 s ( ) /_\
specific to gens A @ .

' /

".
9555955 Building the array aal TRNA xRN
o FSmruaB
ﬂ mRNA marking

Step 3 . On_'[y gene A P,
i o Y] &

%9 can bound S <

%9555 Hybridization

Fluorescence intensity is measured using a
high sensitivity scanner (confocal)

A technology that changed the way to study molecular biology

Traditional methods: a gene/some genes are observed in one experiment: a global vision is missing. They are
used in hypothesis-guided research

Microarray technology: thousands of genes on an array to study their functions simultaneously. Generating
hypothesis research, data driven

The two most used technologies: cDNA microarray and oligonucleotides chip. Both measure genetic
expression levels, through mRNA abundance

Oligonucleotide arrays
(oligo chips)

r_*q

cDNA microarrays

Detail:

» ~25'000 clones in - ~60'000 genes in

5 cm x 2 cm slide 1.28cmx 1.28 cm
= Fluorescent marking « Fluorescent marking
+ 2 experimental « 1 experimental
conditions for each condition for each
array slide array
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IV.A.6.1 cDNA microarrays (spotted)

Building of the ¢DNA microarrays: full sections of ESTs (Expressed Sequence Tags, short sub-sequences of
a transcribed cDNA sequence)

For every gene, a lot of copies of EST (500-5000 bp) are arranged. They are obtained using cDNA
libraries (boosted with RT-PCR) on a spot of a slide (10-50 spots per mm2). Each EST should be
specific (unigenic set)

Microarray

Microscope alids
I

Sample preparation: two mRNA samples are prepared, retro-transcribed into cDNA and made fluorescent
with different colours (markers: Cy3, green and Cy5, red)

Hybridization: gene transcripts expressed in sample, prepared and marked are hybridized with their
complementary sequence on the microarray

Measure of the gene expression: the fluorescent measure in every spot gives a measure of which genes are
expressed in each of the two samples. Example: fluorescent Cy5 measure is done using a 633 nm helium-neon
laser (HeNe) and the emission is at 680 nm

Microarray preparation:

Clone collection (plasmids in E. Coli)

Clones are selected and brought up

Bacterial lysis and plasmidic DNA extraction
DNA amplification in PCR

Check on gel of the PCR products

Preparation in plate of 384
(16x24) wells

Spotting on slide

“Technical” details:
— There can be up to 15’000 elements per slide (usually about 5’000)

— Slide dimensions are typically 2.5 x 2.5 cm (longer slides can be used, but require samples with a
larger amount of marked cDNA)

— Spot distance is usually 120-250 pm
— They are printed by robots with heads containing from 4 to 32 pins at a distance of about 1 cm
— Pins with different shapes exist
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Video: hitp://www.youtube.com/watch?v="Pjr1OycOKrY

Several printing pins exist:

(A Separated pins / tweezers

101 Pin-and-bend

A.  Tweezers models, or with
separated pins, transfer a very
small amount (nanoliters) of DNA
solution to the array, by
capillarity, when the pin touches
the solid surface |

B.  Pins and TeleChemTM tips
apply small drops when the pin
touches the solid surface
(1) TeleChem™ (substrate)

1) Inkjet

C.  Pin-and-bend models, collect
DNA in a small bend and
afterword a pin transfers the
solution on a slide, keeping an
uniform density

D.  Inkjet models (e.g.
STMicroelectronics) spray even
smaller amount (picoliters) of
pressured liquid drops

Sample preparation, hybridization, and measure
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Even in one category of printing pin, every pin is different!

Generally, they are quite ezpensive, due to the setup of their preparation

— ¢DNA clones must be created using EST amplification with PCR (for each spot 10 ng of material are
needed)
— Clones with a length of 1-2 kb are used

The solutions containing the amplified clones can be used to produce up to 1,000 slides
It takes 2 days to produce 100 microarrays with 5,000 genes

Finally, it should produce labelled ¢cDNA from the biological samples, using the reverse transcriptase in
presence of fluorescent or radioactive nucleotides

Principle of the analysis with cDNA microarrays:

— After that fragment of EST arranged in 96 or 384 well plates are deposited at high density on a
microscope slide, make an hybridization on the array with two different types of cDNA, labelled with
different fluorescent dyes, and derived from independent samples of mRNA

— After washing, a laser scans the slide and calculates the ratio of fluorescence induced in the two
samples for each EST: this value indicates the relative amount of transcript for each EST in the
samples

— Video: http://www.youtube.com/watch?v=ffOgVQekKnk

Cloni i IDNA

S — Campionwe | Campione &
B B -\
Puniliwasine %

Ermimiie MO

B i

- | Trascrizione
Inversa ‘

Stamipas

it | s
s polwat Marvatirae von

Cenrboranitn Thisesresceniy |

i [’

Ibridasione dells molecola
bermnglio sul micronrray

Anabst al computer

§ y

Video: http://www.youtube.com /watch?v=VNsThMNjKhM
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Images of cDNA microarray:
Red: expressed gene, e.g. in tests but not in controls
: expressed gene, e.g. in controls but not in tests
: expressed gene in both samples

Gray: not expressed gene in any samples

Ratia (635 nm/532 nm] Ratio (635 nm/532 rim)

Wavelength 538 nm Wavelength 635 nm

Wavalength 532 nm WWavelength 532 nm

Most of the gene are not active in a certain time. In order to quantify, we have to distinguish the background
from the pixels

From images to data:
—  Grid alignment: each probe must be localized in the array image
—  Segmentation: identification of pixels belonging to each spot
— Intensity extraction: evaluation of a numeric value representing the expression level (mean, median,

)

—  Background correction: the background intensity is calculated and subtracted from the spot intensity
value

—  Spot quality: parameters are calculated (e.g. circularity, uniformity, size, ..) to evaluate the quality of
an experiment Pros and cons of “spotted” technology:

Tumor cell

B iz . Healthy cell
gt ey gine
f genas
[ sample
: . _‘--\-_.“-‘ i

s ran sor g = re [FR |
_F,// selonoproten Pl 155 105
Ho probem (peptid 11 00

arythrocyls memtl A7 1

=3¢ TAL 1.4
ko 115
abwmn Kipyol | i
camine parmlod 101 158
PRATHSS gere | 1
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Pros and cons of “spotted” technology
— Competitive hybridization: analysis of mRNA from cells in two conditions
o Pro: relative measures (often expressed as log2)
o Handicap: the definition of the reference, colorimetric problems, possible differences in the
amounts of the two mRNA
—  Difficult to compare results from different arrays: the intensity depends on the amount of probes
deposited
— It takes a lot of mRNAs to prepare the target (50-200 pg)

IV.A.6.2 Oligonucleotide microarrays

Oligonucleotide microarrays: Affymetrix genechips (it was the first company to provide them on the
market) and others
— In place of the ESTs, there are oligonucleotides long 20-80 bases, designed to represent ORF's
— Composition of each set of sequences of oligonucleotides:
o Perfect match (PM): a sequence that could hybridize
o Mismatch (MM): a sequence that should not hybridize, because the central base is inverted
PM  ATGAGCTGATGCGATGCCATGAGAG
MM ATGAGCTGATGCCATGCCATGAGAG
— For each probe with sequence of PM there is on chip another probe with sequence of MM

Each gene is represented as a set of 10-20 oligonucleotides (e.g. 25 bp long in Affymetrix chips), corresponding
to some positions of the represented gene, each with PM and MM

Pro ir
cell P

!

PM
MM

LIL]
] |

Gene
sequence

PM | ACCAGATCTGTAGICCATGCGATGE
MM AGE&G&TCTGTAQ#CCATGCGATGG
B T

Construction of arrays of oligonucleotides (performed by specialized companies selling such arrays)

Oligonucleotides are synthesized in situ on the silicon chip by lithography: using a flash of light and a mask,
which allows the light to hit only the required points on the surface of the chip (process similar to the

production of computers' CPUs)
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In each step, the flash of light “unprotects” (i.e. frees) the oligonucleotides in the desired point of the chip;
then “protected” nucleotides of one of the four possible types (A, C, G, or T) are added, such that only one
nucleotide is added to the desired chains

Light
(deprotection) s Chemical
_TT"'T 111 bond
... I s
Substrate -
Light

(deprotection)
—— /35

" rTEN

55388 —
Substrate "

On site oligonucleotide synthesis
— On a substrate of silicon, oligonucleotides are synthesized through addition cycles of a specific
nucleotide in specific positions; “blocked” nucleotides are deprotected through exposition to light
— Only nucleotides localized in correspondence of holes on the photolithographic mask are accessible to
adding the next one

_ & oulygen

25 nucleatides

GeneChip® milcroarray
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Advantages:
—  Verified oligo sequences
— Predetermined oligo length

Video: http://www.youtube.com/watch?v=MuN54ecfHPw

Creation of photolithographic masks with constantly increasing resolution allows to synthesize on the same
surface an increasing number of individual cells:

TOOGGO - 5 =
Cell dimensions Numbe_r of cells
KO0G0GD - {um) ﬁy?thgmzdanbie on
& Number af cells S a1n2.grm"?2n—ay
SOO0DOG0 -
25 262'144
o 18 505'679
1a060a0 - 11 1'354'000
8 2°560°000
2000040 - i —
¢ 6'553'600 >
1606060 - ’ 7o —= =
2% 18 m 1 pm B T 2

Each chip group of cells measures the expression level of a gene sequence

Scanned microarray (with confocal laser)

H\ refanenoe secuance

———
/ \ Spaced DNA peobe pars

o
)

TGTGATGG CGECTCAGAAGGACTCCTATGTIGGGTIGACGAGGCC
IC CACGAMNRCGACTCCTATGT TG PereolAaich Clige
GOTCAGAMOGACTCCTATGTIGGGTGE  Msmakh O6go
Perfect makch probe poils

AMsmaich probe oalls

Gene expression level quantified by the intensity (I) of the chip cell in the scanned image

Measured level = avg[I(PM) — I(MM)]
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AFFX-Lys k5

AFFX-HUMISC 216
AFFX-HUMISC TE7
AF FX-HUMRG 14538
AFFX-HUMRG 9735
AFFX-HUMRG 8529
AFFX-HUMGA 15076
AFFX-HUMGA 11126
AFFX-HUMGA 177682

From images to data: same steps as cDNA microarrays

Detection scoring

1(PM);

-

HMM),

Calculate the following score:
Ri _I(PM); — I(MM),
" TI(PM), + I(MM),

It determines the probe ability to identify the target

Detection p-value: performed hypothesis test that the score differs significantly from a close to zero

threshold (evidence of a non-random hybridization is evaluated)
The Wilcoxon signed ranked test is used
A detection call describes if the hybridization of a probe set took place (P, presence), or not (A,
absence), or it was only marginally (M)
It is assigned on the basis of p-value
Suggested values:

o Presence: p-value < 0.04

o Marginal: 0.04 £ p-value < 0.06

o Absence: otherwise

P | M | A
0.04 0.06

Remark:

Procedure very fast and effective, but it is very expensive to make the masks, so this technique is
carried out by specialized companies and used only for model organisms

It also requires to appropriately design the combination of oligonucleotide sequences that discriminate
among the various ORFs

Note: as sample (test) a marked and amplified mRNA is used instead of cDNA (as in ¢cDNA
microarrays)

IV.A.6.3 cDNAs vs oligonucleotides

cDNA microarrays (for specific tasks, used a lot in clinical settings):

Théo

They can be applied to any organism without the need to have sequenced the complete genome
Overall are cheaper (but expensive setup)

They are more flexible and rely on hybridization between many bases and not a few

In this way they overcome some problems associated with polymorphisms

Currently, there are also some other solutions offered by Agilent (http://www.home.agilent.com/)
that use longer oligonucleotides (with 60-80 bases) and ink-jet deposition
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Chips of oligonucleotides (for an initial analysis [transcriptome for example]):

— They can contain a higher amount of genes, even predicted genes, that have not been inserted already
in cDNA libraries

— Can be used only for sequenced organisms
— They can be used even by who cannot build a slide
— They have less variability between one chip and another
It is easier (even if with difficulties) to compare data generated by different research groups

Two colour frameworks 2 biological samples on the same array

Normal Tumoral
Cell comparison @
| |
Transcript ,\% ~I
marking \ /
] i g Genes behaving
Microarray containing & Y
whole genome (i DIFFERENTLY

representation 7
/ %

Pseudocolor Pseudocolor
image image

Single colour framework: 1 biological sample on 1 array

Normal Tumoral
Cell comparison {\;‘:?
| |
Transcript | | Genes behaving
marking DIFFERENTLY
Microarray containing
whole genome | |

representation
VS E

Ezpression variation (y axe) of several genes (lines) over-forange] and under-[blue] expressed in subsequent temporal
instants (v aze)
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IV.A.7 Summary of a microarray experiment

Spotted
microarray

In-situ

synthesized
microarray

Scan &
Quanitale

Expression levels of tens of thousands of transcripts are measured in a single experiment. For this reason,
it is called genomic analysis

Expression levels (rfu)

ID Transcribed [relative fluorescent units] p-v?lue
M
Ainalpsrs _Name ; F'ro_be SetMame  Siat Pairz | Stat Pairs Used  Signal  Detection Detection pdvalue-
A2 R-372 T332 at 18 18 22208 P 0000219
A2_R-372 7333_at 16 16 7277 A 0 204022
AZ R-372 7334 _at 16 16 9680 A 0.0s0413
A2 R-372 7335_at 16 16 1614 A 0080419
A2_R-372 7336_at 16 16 2867 M 0.054470
A2 R-372 7337_at 16 16 1464 F 0021866
A2 R-372 7338 _at 16 16 428 A 0378184
AZ_R-372 7339_at 16 16 4456 P 0021866
A2 R-372 7340 _at 18 16 1855 A 0189687
A2 R-372 7341 _at 16 16 5617 P 0003683
A2 _R-372 7342_at 16 16 14184 P 0003067
A2 R-372 7343 _at 16 16 33 A 0975283
82 R-372 7344 _j_at 3 3 33 A 0937500
A2 R-372 7345_3_at 16 16 561 A 0520620
A2 R-372 7346 _at 16 16 441 A 0e41310
A2 R-372 7347 _at 16 16 631 P 00002148
A2 R-372 7348_at 16 16 202129 P noooz19
A2 R-372 7349 _at 16 16 47133 P 0000266
A2 R-372 7350_at 16 16 9394 P 0000388
A2 R-372 7351_at 16 16 5078 P 0.002683
A2 R-372 7306_at 16 16 418.4 P 0000562
A2_R-372 7307_at 16 16 4653 P 0 000266
AZ_R-372 7308_at 16 1% 05 P noooz21g

Array reading results

Search of regulated transcripts (in test-control comparison)

— Comparative analysis allows to compare, for each represented transcript, the expression level of one
condition to another. Directly comparing the expression level of the same transcript [probeset]

— In this way, it is possible to identify and to quantify accurately alterations at transcriptional level
between two samples

Control @ p16 = 1°000 rfu

Test @7 i p16 = 2’500 rfu

rfu : relative fluorescent unit
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IV.A.8 Serial Analysis of Gene Expression (SAGE) [add.]
SAGE analysis:

— Method used to determine absolute abundance (or concentration) of every transcript expressed in a
cell population, by using automatic sequencing in series of specific markers for each gene, produced
by connected molecular techniques

— Principles upon which SAGE is based:

o A short sequence of 10-14 bps contains sufficient information to univocally identify a transcript.
These sequences can be attached to each other in order to create a longer sequence

o The number of times a short sequence occurs measures the expression level of the
correspondent transcript

— Therefore, unique markers, 15 bps long, are sequenced in series. In every sequencing reaction, 50
markers are obtained

— Usually, two markers for each gene are used, so 50’000 markers are needed for the whole human
genome

o Complex and expensive procedure (5’000 Euro for each sample). Unfeasible to repeat
experiments several times

o It provides what can be considered the exact measure of the transcript number

SAGE analysis steps:
— Isolate mRNA from biological sample to be analyzed
— mRNA to ¢cDNA transcription
— Cut of appropriate cDNA sequences with restriction enzymes, in order to get short sequences
— Attach an adapter to create a “di-tag”
— Connect di-tags between each other
— Amplify, using a bacterial vector, long di-tag chains
— Sequence amplified chains
— Recognize, using software, short sequences, count them and associate them with the related transcript

A AR

I =

-

' 1 1 1 R T
| =

e

Cutting, using anchoring enzyme B
Isolation of 3' extremities on microspheres

P N O N ST N N N —

oA A I__-'-'i"'.%aandn —
i ‘ b

Bound with trigger that allows marking B
Markers release and purification I

Ditag creation

Amplification using PCR 8
Purification
Linking ditag with each other 2

Cloning as fragments 1 kb - long

Sequencing of > 10°000 markers : W
ldentification and analysis o
63 markers Adh

L =2 2 L — - S = —_— —_— e ——
e — 34 markers Xras3
e u——oS— 28 markers HoxA2
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IV.A.9 Microarray and Gene Expression Data (MGED)

Standardization of microarray data and annotations (comments here are true for microarray, but also
for any technology that produces the same type of data)

— MGED team (Microarray and Gene Expression Data): http://www.mged.org/

— Team’s goal is to simplify:
o Use of standards for DNA microarray experiment annotation and data representation
o Introduction of experimental tests and data/result normalization methods

— Several international centers are involved (TIGR, Affymetrix, Stanford, Sanger, Agilent, Rosetta,
etc.). Coordinated by European Bioinformatics Institute (EBI)

Glossary MGED (http://www.mged.org/)

—  MIAME (Minimum Information About a Microarray Experiment): standard for ezperiment annotation

— MAGE-OM (MicroArray Gene Expression - Object Model): model of the data generated by microarrays

— ArrayExpress (http://www.ebi.ac.uk/microarray-as/ae/): database based on MAGE-OM

— MAGE-ML (MicroArray Gene Expression — Markup Language): markup language to share, among
databases, the experiments and their data

—  Expression Profiler (http://www.ebi.ac.uk/expressionprofiler/): tool for the analysis of microarray
data that directly uses ArrayExpress

MIAME General principles [Brazma et al., Nature Genetics, 2001] — The standard to define the information
to be collected

— Information acquired should be enough to interpret the results and to replicate and integrate
experiments

— Information structure should allow queries and automatic analysis on data

e - 1 - i
External links | Publication !
i :
R R i

e e —

= 1

Experiment i

1

6 parts of a :

microarray !

experiment :

Source H

. 1

(e.g., Taxonomyy
i

Hybridisation Array

1

i

-

i

i

‘ i

Normalisation Data :
1

ArrayExpress (http://www.ebi.ac.uk /microarray-as/ae/)

_______________

— Database with microarray experimental data, where information are described in a standard way
It complies with MIAME
—  Web interface:
o Queries: genes, conditions, experiments, arrays, samples
o DBrowsing: gene or experiment views

Database content in the context of data analysis
—  Samples — Annotations
— (Genes — Annotations
—  Genetic expressions — Expression levels
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: Sample
Samples '

]HM]- ‘%wwm// annotations

Gene expression
matrix

I

5 % Gene expression
~ % A levels
Gene / =
annotations % o
IV.A.10 Analysis of expression data
Signal RESULTS
(intensity of Expression data |
fluorescence)

N

o

Scanned images from
microarray

IV.A.10.1 Data acquisition and signal pre-processing

Acquisition and pre-processing of the signal (fluorescent intensity) consists of:
— Image analysis
— Image/data normalization
— Data transformation

Software: GenePix, MAS5, ...

Signal (intensity
of fluorescence)

Images Data

Image analysis:
— Identify probe positions related to every gene (gridding)
— Distinguish pixels related to foreground and background (segmentation)

|
mu‘mw

ol
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Images/data normalization:

— Identify and remove systematic error

o Different concentration of probes and different hybridization efficiency lead to different
brightness in different array measures

»  For experiments with several arrays and oligonucleotides, it is possible, for instance,
to scale measures such that average intensities are all the same

o Normalization based on a set of genes (housekeeping genes) whose expression must be invariant
in different experimental conditions

—  Software: dChip (http://www.dchip.org/)

Data transformation:

—  Logarithmic transformation
—  Qutliers’ detection
—  Missing values management
IV.A.10.2 Data mining
Selection of differently expressed genes
Clustering, class discovery: Unsupervised

Classification, class prediction: Supervised

RESULTS

i
onramne

y‘-l | y\l v ) | ‘-l .”

§ | X
X N1 A N2 NM

Expression data

IV.A.10.3 Microarray data analysis issues
Data set dimensions
Different supports
Different technologies on different platforms: Oligonucleotides / spotted cDNA

Ezxternal database references are not stable: identification codes of sequences on microarrays can change in
different database versions

Array and sample annotations: they are often incomplete/not sufficient, written using a non-standard
terminology

IV.A.10.4 Microarray data analysis tools
Ezpression Profiler (http://www.ebi.ac.uk/expressionprofiler/), completely integrated with DB ArrayExpress
Bioconductor (http://www.bioconductor.org/)

— Data analysis tool

— It is the result of an open-source software project
Specialized tools

— Public / open source

— Commercial
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IV.A.11 References

Some references:

— Interactive example of a microarray experiment: http://www.bio.davidson.edu/courses/genomics/chip/chip.html
PCR interactive animation: http://www.dnalc.org/ddnalc/resources/pcr.html
DNA hybridization, sequencing, PCR, microarray: http://www.phgfoundation.org/tutorials/dna/
“Our” tools:

o GAAS: http://www.bioinformatics.deib.polimi.it/GAAS/

o Microgen: http://www.bioinformatics.deib.polimi.it/Microgen/
Orange - Open-source data visualization and analysis tool: http://orange.biolab.si/

IV.B DNA Microarray data analysis (26 Oct.)
IV.B.1 DNA Microarrays

IV.B.1.1 Microarrays

Microarrays: microscope slides or chips that contain ordered series of probes
— DNA — DNA microarray
— RNA — RNA microarray
— Protein — Protein microarray

— Tissue — Tissue microarray

Here, we focus on DNA microarrays used to determine expression levels of genes (expression profiling).
Goal: study the effect of treatments, diseases, developmental stages, etc. on gene expression. DNA microarrays
can also be used to analyse gene sequence in a sample (SNP analysis, minisequencing)

Spotted microarrays, where probes are
—  Small fragments of PCR products that correspond to mRNA
— ¢DNA (complementary DNA, synthesized from a mRNA template [helix opened during the
hybridisation step])
Oligonucleotide microarrays, where probes are short sequences designed to match parts of the sequence

of known or predicted open reading frames

IV.B.1.2 Two channels (cDNA microarrays)

Typically hybridized with cDNA from two samples to be compared (e.g., diseased tissue vs. healthy tissue)
and labelled with two different dyes

— Each gene is represented by one partial cDNA clone
—  Heat variation cycles are used to break cDNA double strain bonds and allow hybridization
— Dye relative intensities are used to identify up-regulated and down-regulated genes

Two samples on the same microarray
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Cancer Cells Normal Cells

RNA Isolation
v v
TmRNR TmRNA
Reverse
Transcriptase
Labeling
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"Red Flourescent™ Probes “Green Fluorescent” Probes
Combine Targets

Hybridize to
Microarray

IV.B.1.3 Single channel (oligonucleotide microarrays)

Arrays are designed to give estimations of the absolute levels of gene expression. Comparison of two
conditions requires two separate single-dye hybridizations on two single channel microarrays

— Each gene is represented as a probe set of 10-25 oligonucleotide pairs (each probe)

— Most popular single-channel system: Affymetrix GeneChip™

Normal Tumoral
@ @f
| |
X =
! |

;

|

IV.B.2 Normalisation

Goal: obtaining quantitative information from the images we obtained through the processes mentioned before
and estimate the quality of the measurement. We aim to compare the measurements in two conditions.

Normalization: process of removing systematic variations that affect measured gene expression levels in

microarray experiments
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Hypotheses:
— Measured intensities for each arrayed gene represent gene expression levels (major hypothesis)
o There is no saturation of any probe
o The amount of photochrom measured is proportional to the quantity of mRNA produced

o Biologically relevant patterns of expression are typically identified by comparing measured
expression levels between different states on a gene-by-gene basis

—  We assume that, for each biological sample we assay, we have a high-quality measurement of the
intensity of hybridization (the quality of the spot we measure is good)

— We do not take into account:
o Particular microarray platform used

o Type of measurement reported (e.g. mean, median or integrated intensity, or average difference
for Affymetrix GeneChips™)

o Thus, we suppose that there is no influence on the quantity of expression between the measures
or tools used

—  We suppose that the following are performed:
o Background correction

o Spot-quality assessment and trimming (outlier elimination, unless of interest for the specific
analysis)

IV.B.2.1 Systematic variations

Sources of systematic variation:

— Duye effect: differences in dye (labelling) efficiencies — intensity varying bias: in a channel the intensity
is higher than in the other

— Scanner malfunction / uneven functioning

— Uneven hybridization — spatially varying bias

— Printing tips: slides are printed with more than one pen; if any of these pens works differently from
others, the corresponding sub-array could differ — spatially varying bias

IV.B.2.2 Expression ratio
Let R (red) and G (green) denote respectively the target and reference samples

The expression ratio of the i-th gene on all arrays used is defined as:
R

Ti=g =1, Ny

The measures R, and G, can be made on either a single two-channel array, or on two single channel arrays

Issue: expression ratios treat up- and down-regulated genes differently (despite having a factor of 10, the
expression ratio can be different):

— genes up-regulated by a factor of 10 a expression ratio of 10
— genes down-regulated by a factor of 10 a expression ratio 0.1

IV.B.2.3 Log expression ratio

To solve the problem of up- and down-regulated genes, we can use log,(ratio):

log, T; = log, (%)

7

The distribution of log2(ratio) is symmetric a it does not favour up- or down-regulation
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IV.B.2.4 Assumptions

Let us assume that:

—  We are starting with equal total quantities of mRNA for the two samples we are going to compare

— Given that there are millions of individual mRNA molecules in each sample, we will assume that the
average mass of each molecule is approximately the same, and that, consequently, the total

number of molecules in each sample is also the same

— The arrayed elements (probes) represent a total or random sampling of the genes in the organism
(note that in some applications, this might not be the case, e.g., for the cDNA microarray built to

monitor a set of genes predefined)

o This point is important because we also assume that the arrayed elements interrogate the two

mRNA samples totally or randomly

= If the arrayed genes are selected to represent only the genes we know will change, then
we will likely over- or under-sample the genes in one of the biological samples being

compared

= If the array contains all genes or a large enough assortment of random genes of the
considered organism, we do not expect to see such bias

IV.B.2.5 Global normalisation

Given the previous assumptions, we expect to observe the same average intensity on both channels in all

arrays:
— Average R/G ratio =1
— Average log,(ratio) =0

Global normalization is achieved by:

/__
/
Gi - globalGi
N,

array .
P v
global ZNGT‘Tay G.
i=1 ?

In terms of log2(ratio), we obtain:

logy T/ = logy T; — logy K, global

Possible alternatives: equate medians, use a subset of arrayed genes, ...
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IV.B.2.6 Intensity adaptive normalisation

Several studies have indicated that the log,(ratio) values can have a systematic dependence on intensity,

which most commonly appears as a deviation from zero for low-intensity spots

Such dependency can be studied in MA (Minus-Add) plots

v—-ragm.ssmr
[0)
<
%
| | | I
8 10 12 14
A=log2(R*G)/2
R,
M, = log, G, = logy, R; —log, G,
A = log, (Ri : Gi) o log, R; +log, G,

‘ 2 2
The banana shape shows that there is not a linear dependency of the ratio to the specific absolute intensity

measured

IV.B.2.7 LOWESS normalisation

Global average of M value differs from 0: corrected by global normalization
Local average of M value depends on A (banana shape curve)

Simple linear regression is unable to correct for the intensity-dependent bias: corrected by LOWESS normalization

LOWESS: Locally Weighted Linear Regression: it consists of calculating, for each A value, the regression

line on the basis of a subset of points (M, A) around such A value.

e s L S [
— loweass

M=log2(R/G)

8 10 12 14
A=log2(R'G)/2
Let M(A) denote the LOWESS fit for a given value of A. LOWESS correction is obtained by:
M =log, T} = log, T; — M(A;) = M; — M(4;)
This equation can be made equivalent to a transformation on the intensities:
R = R,, G, =G, -2MA)
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IV.B.2.8 Local normalisation

Most normalization algorithms, including LOWESS, can be applied either globally (to the entire data set), or
locally (to some physical subset of the data)

For spotted arrays, local normalization is often applied to each group of array elements deposited by a single
spotting pen (referred to as a ‘pen group’ or ‘sub-grid’).

Local normalization has the advantage that it can help correcting for systematic spatial variation in the array
Let M;(A) denote the LOWESS fit for the sub-array j:
= logy, T} =log, T} — Mj<Ai) =M, — Mj<Ai)

if the spot I belongs to the sub-array j

1.0
1.0

MNormalized M
0s

MNomalized M
~05 00 08§

=05 00

-1.0

-1.5

-1.5
1

Global LOWESS wvs. Local (print-tip) LOWESS

IV.B.2.9 Variance regularisation

Normalization adjusts the mean of the log,(ratio) measurements, but the variance of the measured

log, (ratio) values might differ from an array region to another, or between arrays

An approach to deal with this problem is to adjust the log,(ratio) measures so that the variance does not
vary.

Let 07 denote the variance of the normalized logy(ratio) values in the j-th sub-array:
N;
1
o} = N. Zl
with M] = M; — M;(4,;)
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The scaling factor for the log,(ratio) values in the j-th sub-array is:

o]
a;

= 1
[Hivi;baTTay Ui:l Nsuba'r'ray

Then, all elements within the j-th sub-grid can be scaled by dividing their values by the scaling factor value
a; computed for that sub-array:

M log, T/

"o i 274

M ==

J J
R/
logo—%
: : M _ log, T/ 2/ : :
Since T} = R; /G, the equation M’ = =+ = =82-1 — —— can be made equivalent to a transformation on the
J J J

intensities:
1
R;/ — R,;aj
1
G/ = G
if the spot ¢ belongs to the sub-array j

To measure the sub-array dispersion, it is also possible to adopt the MAD (Mean Absolute Dispersion),
which is more robust to outliers compared to the variance:

MAD]- = medianj(|M,- — medianj<Mi>|)

IV.B.2.10 Comparison

Without normalization Mean centering Global LOWESS

05 1.0

M

-0.5

-1.5

The colour lines are the mean of the quantity measured

We can see that the Global LOWESS even increase the difference between arrays, contrary to Print-tip
methods
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IV.B.2.11 Normalisation between array

Replication is essential for identifying and reducing the variation in any experimental assay

— Technical replicates provide information on natural and systematic variability that occurs in
performing an assay

— Biological replicas use mRNA obtained from distinct biological sources

The particular approach used for between array normalization depends on the chosen experiment design. In
the following, we consider two simple experiment design choices:

— Dye-reversal analysis (for two-channel cDNA microarrays)

—  Replicate averaging

IV.B.2.11.1 Dye-reversal analysis

Let us assume to have two samples, A and B. Perform two hybridizations:

— A — Red, B — Green
- A — Green,B — Red

’ Ri,l _ Az ’ Ré,l Bz
14 — =T 24— v A
G/Li i G2,i Ai
As we are making a comparison between (ideally) identical samples:
/ / Az Bz
logy (77 ; - Ty ;) = log, <§,Z> =0

— Consistent measurements should have the previous quantity close to zero, and can be averaged

— Measurements for which the previous quantity deviates significantly from zero (e.g., more than two
standard deviations) can be eliminated from further analysis

IV.B.2.11.2 Replicate averaging

Let us assume to have more than one replicate for the same experiment

/ ’ R;az
Mkﬂ; = log, Tk,z’ = log, a
ki

/ 1 / /7
ki = §log2<Rk,i ) kz)

with k=1,..., N

replicates

The simplest strategy is to average the M and A values:
N,

1 replicates
- - ’
M, = g My ;
replicates k=1
o 1 Nreplicates
_ /
A’L - N Ak,’i
replicates k=1

that corresponds to taking the geometric average of the raw measurements R and G

IV.B.3 Detection of differential expression

Goal: identification of genes that are significantly differentially expressed between one or more pairs of
samples in the data set (after data normalization)
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Simple strategies (thresholding):
—  Constant thresholding:
o Compare fold-change with a constant threshold 7 (e.g. 7 = 2)
o If |M;| > 7, then the i-th gene is differentially expressed
—  Fized thresholding:
o Compute the standard deviation o,; of all M values
o If |[M;| > c-o,y, then the i-th gene is differentially expressed (c is typically 2 or 3, like for 7)
—  Adaptive thresholding:
o Compute a local standard deviation o{o*®(A;) of M values, as a function of A
o If|M;|> c-oldr(A,), then the i-th gene is differentially expressed

More sophisticated techniques adopt the framework of hypothesis testing:
— Gene-by-gene differential expression (DE) analysis
— Gene Set DE analysis (GSEA: Gene Set Enrichment Analysis), not discussed here

Gene-by-gene hypothesis testing

—  Goals:

o Select a statistic that ranks the genes in order of evidence for differential expression, from
strongest to weakest evidence (easier, but more important)

o Choose a critical value for the ranking statistic, above which any value is considered to be
significant (harder)

— Let us define the (unbiased) sample mean and the sample standard variance as:
N

1 replicates
_ /
M,=—— Y. M,
replicates k=1
1 N'r‘eplicates
2 _ /o 2
Si = N 1 E , (Mk,i M,)
replicates k=1

Here we focus on a single gene, where the different measurements are those obtained in different replicates of

genes expression experiment

Hypothesis testing

— Formulate two hypotheses:
o Null hypothesis: the ¢-th gene is NOT differentially expressed
o Alternative hypothesis: the i-th gene is differentially expressed
— Define the distribution under the null hypothesis
o Assumption: the normalized log,(ratio) measurements are zero-mean Gaussian distributed
with unknown variance o?:
My ; € N(0,07)

— Compute the test statistic:

o t-statistic: ¢, = # with s; the sample standard variance
/\/ Nreplicates
o So, it is possible to rank genes, by sorting them according to ¢, as the evidence of differential

expression
— Compute p-value (see later on)
— Compute significance (use multiple testing correction, if needed) (see later on)
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IV.B.3.1 t-static

The t-statistic is used to compare a sample mean to a specific value i, (independent one-sample t-statistic),

_T— g

=

t

where N is the sample number

If the population is normally distributed, under the null hypothesis the t-statistic is distributed as a t-student
distribution with (N — 1) degrees of freedom (dof)

-
=} P
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Normal (blue) vs. t-student (1 dof) Normal (blue) vs. t-student (1,3,5,10,30 dof)

IV.B.3.2 z-statistic

Note that if the true variance o of the population was known in advance, we would have used the z-statistic:

_ T

=7y

z

which is normally distributed NV (0,1)

The t-statistic converges to the z-statistic when the number of samples N is large (in our case, N is the
number of replicates, which is generally low: 3, 5, or 7 at most [so definitely not large...])

IV.B.3.3 p-value

To compute the p-value, we need to have that:

— The test statistic has been computed
— The distribution of the test statistic under the null hypothesis is defined

The p-value represents, intuitively, the probability of observing, under the null hypothesis, a value less likely
than that of the test statistic

Let F(t) = f_t - f(t)dt denote the cumulative density function of the probability density function under the
null hypothesis; the p-value of the i-th gene is given by:

pi=2- (1 _F<‘tz|>)

Note: the factor of 2 is due to the fact that we are using a two-sided test, i.e. we do not distinguish between
up- and down-regulated genes
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IV.B.3.4 Significance

The p-value is also defined as the significance level
— Set a threshold « (often, a = 0.05)
— If p, < a, reject the null hypothesis, the gene i is significantly differentially expressed (DE)
— If p; > o accept the null hypothesis, the gene 7 is not significantly DE
— The threshold « controls the false positive rate, i.e.:
o It sets the probability of discarding the null hypothesis when it is true

o In our context, the p-value is the probability of declaring a gene to be significantly DE when
it is not

IV.B.3.5 Multiple testing correction

Note: defines the actual « false positive rate only when testing the differential expression of one gene at a
time. When testing multiple genes simultaneously, as it is usually the case, multiple test correction is needed

Why multiple test correction? Example:
— Imagine a box with 20 marbles: 19 blue and 1 red
— What are the odds of randomly sampling the red marble by chance? It is 1 out of 20 (i.e., 5% chance)
— Now let’s say that you get to sample a single marble (and put it back into the box) multiple times
(e.g., 20 times)
—  You have a much higher chance to sample the red marble (there is a 64% chance in the latter case):

Pra = (1= (1—a)eerr)

Widely adopted multiple testing correction methods:

Bonferroni More false negatives (FN)

Bonferroni-Holm

Westfall-Young
Benjamini-Hochberg (False Discovery Rate)
None

More false positives (FP)

All these methods define different ways to correct (adjust) the p-value of the performed tests, in order to
provide a p®¥-value that takes into account the wvariation of test significance due to the high number of
multiple tests preformed

Bonferroni: (overly conservative: fewer FP, more FN)

adj _
pi =Di- Ntests

All the p-values are adjusted the same way

Bonferroni-Holm:

— Letp;,i = 1,..., N, be the ranked p-values (p; < p; ;)
- Fori=1:N ; with IV, N

tests tests — genes

o If p?dj = P;(Npegrs — 1+ 1) < a, then the null hypothesis rejected: gene 7 is DE

o Else, the null hypothesis accepted: gene i is not DE
— End

It controls the probability of one or more FP (type I errors) among all tests done (i.e., the family wise error
rate, FWER)
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Woestfall-Young:

- Forj = 1: M (e.g., M = 1000)
o Perform random sampling of the N,

enes

o Compute the p-value pz for each expression level i

o Compute the minimum p-value: p’ = min  p]
1=1,...;Niests
— End
— Compute p?d] as the fraction of p/-values that are less than p, (original p-value for expression level )
padj _ ij<pi
% ij

Accurate, but costly (requires resampling)

Benjamini-Hochberg (False Discovery Rate — FDR):
— Let p;,i =1,..., Nyy, be the ranked p-values (p; < p,;. 1)
— For: = 1: N, ; with IV, N,

tests tests — genes

o If p?dj =p; Nt% < «, then the null hypothesis is rejected: gene ¢ is DE

o Else, the null hypothesis is accepted: gene ¢ is not DE
— End

The least conservative: more FP, fewer FN

FDR controls the expected proportion of incorrectly rejected null hypotheses (type I errors, or FP)

IV.B.3.6 Moderated statistics

Ordinary t-statistic is not ideal because a large t-statistic can be driven by an unrealistically small value of s
_ T — fig
s/VN

So, genes with small sample variance have a good chance of giving a large t-statistic even if they are not DE

t

Alternative statistics:

— B-statistic is an estimate of the posterior log-odds that each gene is DE (i.e., the log of the ratio of
the probability of being DE and not being DE)

Values for B-statistic greater than zero correspond to a greater than 50% chance that the gene is DE
— Penalized t-statistic (equivalent to B-statistic in terms of ranking):
M

r=_—"""*
’ a+ s?
N,

replicates

where the penalty a is estimated from the mean and standard deviation of the sample variances s?

IV.B.3.7 Example

Given the relative expression levels of two genes ¢ and jin N = 4 replicate experiments:
M! =[-0.4326, —1.6656, 0.1253, 0.2877]
M = [0.8535, 3.1909, 3.1892, 1.9624]

Compute the t-statistic:
M, = —0.4213, s, =0.8850, t, = —0.9520

M,=2.2990, s, =1.1241, t; =4.0905
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Compute the p-value (from t-statistic tables, with N — 1 = 3 degree of freedom):
p; = 04113,  p; = 0.0264
If a« = 0.05, only gene j would be declared as significantly DE

p, =0.4113 p, =0.0264

0 = 4 — - = o4

IV.B4 Experimental design of transcriptome studies

Experimental design of genetic expression studies:

“Static” experiments: two or more subject classes (different phenotypes / treatments)

— Example 1: Selection of genes with different expressions (in different subject classes)
— Example 2: Classification (supervised)

“Dynamic” experiments: same subject in different times
— Temporal series of genetic expressions during a perturbation

— Example 3: Selection of differentially expressed genes in time, clustering

IV.B.4.1 “Static” experiments with microarrays

Two or more subject classes (different phenotypes / treatments)

Expression profile

Molecular fingerprint

Gn| Xyy oo Nygy Vug oo
A1 ... Am, B1
microarrays
M=m_+m,
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Example 1: Selection of genes with different expressions (d.e.)
Group A Group B

o T Y o Y]
g
£

b= : : ; |
Galel T A 3 - Hivese

Al .. AmM B1 ... Bm,
microarrays

A B C
HEALTHY| piAB. | DIA. B vs A 85c.e. genes (191 661)
N=6451 C Vs A: 40de. genes(16]: 241

m,=5 m,=5 m,=5

Example 2: Classification (supervised)

roup A Group B
Tl:.a, Y - Yim
Diagnostic BM samples (n=132)
Loy Yl Yoo E
. Am; Bi .. Elml, g
microarrays F

EZA-PEX ML T-ALL HO=59 BCR-ABL TEL-AML1

o
350 +350

6 groups (types) of childhood acute lymphoblastic leukaemia (ALL)
M =m, +my =132, N = 26000
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IV.B.4.2 “Dynamic” experiments with microarrays

Same subject at different times:

expression profile

BEpESSION

penatic

fime

Temporal series of
gene expression
during a perturbation

genes

Microarrays (time)
Example 3: Selection of differentially expressed genes in time

Reverse engineering
NSULIN (20 RG_L/34A Afymeina & chips) . Gene networks

379 insulin-regulated genes

» Synthetic biology
Manly, genes
related with lipid

_ metabolism and

" electron transport

Manly, glycolysis " R.\ n ‘/ = \
genes \ &

Microarrays (time)

Reverse engineering: computations that we perform to understand the biological process that occur at a
cellular level:

— The gene networks analysis refers to the study of the interactions between the proteins encoded by
the gene interact and the DNA on places that regulate the activity of the gene, to build a gene
regulatory network, that explain the biological process occurring within a cell (see further lessons).

—  Synthetic biology refers to the field of engineering that focuses on mimicking the biological process

that occur in the cell, to study these processes or to be used in industrial processes (use of some
materials, or in the agricultural engineering)

IV.B.5 Machine learning basics (2 Nov.) ¢ uFos

€ PRE1

Input data: a (typically small) set of microarray experiments g oS
. . € RPND

(samples) with, usually, many variables (genes) € RPT1
C RPFTE

. L. . C PRE4

For each gene, a feature vector is formed by combining its £ Heve
normalized expression values in the available samples € men3
€ SCLl

. . C RES

— Each row represents the feature vector associated with a gene C Faes

€ PRE2

— Each column represents an experiment E Hay

C FREG
—  Typically, we work in a small sample set scenario: much more L

. . g . RPTS

genes than experiments (usually not good for statistical 5
C RPH1Z

analysis) C  RPNS

C RPNE
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Unsupervised learning (clustering / class discovery)

— Feature vectors are unlabelled

— Goal: attach to each gene a cluster label by grouping together genes that exhibit similar expression
behaviour

Supervised learning (classification / class prediction)

— Feature vectors are labelled (e.g. before / after treatment)
— Goal: predict the label of a new unlabelled sample

— When the class variable has continue instead of discrete values, regression analysis is used instead of
classification (not covered in this class)

IV.B.5.1 Definitions

Features: variables or attributes of the samples that are used to cluster or classify genes
Distance: method used to decide whether two samples are similar or not

Model: how clustering or classifying, e.g.:
— Hierarchical clustering
— k-means
— k-Nearest Neighbors (k-NN)
— Support Vector Machines (SVM),
— Neural Nets

IV.B.5.2 Distances

All (every!) machine learning tools rely on some measure of distance between samples. You must be aware

of the distance function being used
— There are very many different distances (e.g., Euclidean, Correlation [used in biological data most of
the time], Manhattan, ...)
— The choice of distance is important and in general substantially affects the outcome

— The choice of distance should be made carefully

Metric distances: a distance measure d,; between two vectors, ¢ and j, must obey several rules:

— The distance must be positive and definite, d;; > 0 (i.e. it must be zero or positive). An object is zero
distance from itself, d;; = 0

— The distance must be symmetric, d,; = d;; (i.e. the distance from i to j is the same as the distance
from j to 1)

—  ‘Triangle’ inequality: when considering three objects, ¢, j and k, the distance from i to k is always less
than or equal to the sum of the distance from i to j, and the distance from j to k (i.e., d;, < d;; + d;.)

Distance matrix: distances can be represented as matrices, where the value in row ¢ and column j is the
distance between sample i and sample j (or between genes i and j). These matrices are called distance
matrices and they are symmetric

Théo Saulus Page 130 of 204 Politecnico di Milano, winter 2021



Prof. Marco Masseroli

Bioinformatics and Computational Biology

It is not simple to select the distance function. Let’s consider the following set of points:

Distance Correlation
. e i i/\"j J
Expression df = (SCf — :ck)2 di; = Z = ~ >
! ; k=1 \/Zkzl(wf - lu7,>2 \/Zk=1<x_]; - /’LJ)
Red-blue distance 9.45 0.006
Red-grey distance 10.26 0.768
Blue-grey distance 3.29 0.7101

corr=0.87

corr=0.04

Correlation measures linear association and is not resistant (one outlier can ruin it)

Manhattan distance: the distance between two points as the sum of the (absolute) differences of their
coordinates:
N

dif = ot —j]

k=1

Also known as rectilinear distance, L, distance or [; norm, or city block distance, since it is induced by the

p-norm distance, or Minkowski distance, when p = 1:

N b
ai = (Z|x§ _ x§|p>

k=1

It is called Manhattan distance because it is the distance along the square path connecting two points, i.e.
the only possible in Manhattan (where it is not possible to go in diagonal through a skyscraper block!)
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IV.B.6 Unsupervised learning

Unsupervised learning is known as clustering, or class discovery in some cases
— The basic idea is to determine how many groups are in the data, and which variables seem to define
the groupings
— Clustering algorithms are methods to divide a set of n observations into g groups so that within group

similarities are larger than between group similarities
— The inputs are typically the feature vectors of the data elements (genes), i.e., the rows of the gene-
experiment matrix

Sample

Samples 4
i annotations

Gene expression
matrix

Giene expression
levels

\chn-:s

S

Ciene
annotations

— The number of groups, g, is generally unknown and must be selected in some way

— Implicitly both features and a distance must have been already selected (there are interactions between
the distance being used and the clustering method)

— There is no training sample (and the groups are unknown before the process begins)

— Unlike classification (supervised learning) there is no easy way to use cross-validation

IV.B.6.1 Hierarchical clustering

There are two types of hierarchical clustering;:

— Agglomerative: generates a hierarchy of clusters going from n clusters of 1 element each, to 1 cluster
of n elements

— Divisive: divides the data into g groups using some (re)allocation algorithm (not covered here)
In both types, before it must be defined:
— Distance between feature vectors (see previous slides)
— Distance between groups of feature vectors (clusters):
o Single linkage
o Complete linkage

o Average linkage
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Distance between groups of feature vectors:

Single linkage: distance between two clusters is the smallest distance between an element of the first cluster
and an element of the second cluster:

er ¥ \\.‘ ) /_,..-——'———-._‘_\\

el ™ A )

|\ L]
Sl LA
— Chaining issue: tends to force clusters together due to single entities being close to each other
regardless of the positions of other entities in each cluster

Complete linkage: distance between two clusters is the mazimum distance between an element of the first
cluster and an element of the second cluster
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'F\ L]
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— Not to be used if lot of noise is expected in the dataset

— This method also produces very compact clusters; useful if entities of the same cluster are expected to
be far apart in multi-dimensional space (provided there is no noise), i.e., outliers have more weight in
cluster definition

Average linkage: distance between the two clusters is the average of all pairwise distances

) d(r, s)——Zde KX

=I|nlc(l nr;ls =1 "F_l
=l

3

— More computationally expensive than the other methods
— It is halfway between single and complete linkage. Several variations of this method exist

— The chaining issue is not observed, and outliers are not given any special favours in the cluster
definition; This makes it the most popular method of the three

— It is also referred to as UPGMA (Unweighted Pair-Group Method using Arithmetic averages)

IV.B.6.2 Agglomerative hierarchical learning

Input: one feature vector for each gene
1. Initialization: each cluster consists of a gene
2. Compute the distance between each pair of clusters
3. Merge the two clusters with the smallest inter-cluster distance
4

Go to step 2, until all genes are contained within one big cluster
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Output: dendrogram:

A tree structure with the genes at the bottom (the leaves)

The height of the joins indicates the distance between the left branch and the right branch

A threshold on the dendrogram levels defines the clusters

Step 0 .‘ISIep 1 ?tep 2 ‘i‘tep 3 ?rep 4 Chips / Patients
| . .

XW \‘3 b —(El b}-\ (resm ‘ |

~
\d/— Cdf\/d e Clinical data

'\.@) \?
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FEx
TEE S

Clustering

—

Senes
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IV.B.6.3 Partitioning methods
Agglomerative clustering partitioning methods:
- k-means
— PAM (Partitioning Around Medoids) [used in biology]
—  SOM (Self-Organizing Maps) [used in biology]

It must be first predefined the number of clusters K (and their centres) after which the algorithm partitions
the data iteratively until a solution is found

IV.B.6.4 k-means clustering
1. Initialisation:
— Define the number of clusters k
— Designate a cluster centre (a vector quantity that is of the same dimensionality of the data) for each cluster

2. Assign each data point to the closest cluster centre; the data point is now a member of the cluster

3. Calculate the new cluster centre (the geometric average of all the members of the cluster)
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4. Calculate the sum of within-cluster sum-of-squares of distances of cluster elements from cluster centroid:
— If this value has not significantly changed over a certain number of iterations, exit the algorithm

— If it has changed, or the change is insignificant but it has not been seen to persist over a certain
number of iterations, go back to step 2

A common problem in kmeans partitioning: if the initial partitions are not chosen carefully enough the

computation has the chance of converging to a local minimum, rather than to the global minimum solution.
— The initialisation step is therefore very important
— To combat this problem, it might be a good idea to run the algorithm several times with different
initialisations
o If results converge to the same partition, it is likely that a global minimum has been reached

o Drawback: computationally expensive and very time consuming

Another way to combat it: dynamically change the number of partitions (clusters) as the iterations progress
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1 B nearest ' :
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] i { 1 1 + 1 i: v
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s sl ¢ ot .
|n|t|§} assign points | - cluster ) I I N I o
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There is a growing interest in using fuzzy logic in clustering algorithms. Fuzzy logic allows the algorithm to
accept the possibility that a single data point (i.e., gene) can belong to more than one cluster. By defining a
vector of memberships for each data element (gene)

IV.B.6.5 Singular Value Decomposition

The Singular Value Decomposition (SVD), sometimes called Principal Component Analysis (PCA),
can be used to:

— Reduce the dimensionality of the data to summarise the most important components whilst
simultaneously filtering out noise — A conventional clustering algorithm (e.g., k-means) is applied
afterwards on reduced feature vectors

— Perform clustering directly
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Consider the matrix A € R™*"™ where:

The SVD of A is defined A = UXVT where:

m is the number of genes
n is number of experiments (samples)

A;; s the expression level of the i-th gene in the j-th sample

7

U is a m X r orthogonal matrix (i.e. UTU = I; I: identity matrix)
V is a n x r orthogonal matrix (i.e. VIV = I; I: identity matrix)

) is a r X r diagonal matrix

SemAAARRASAOAAOARRAAAAAARAAAS
-
=
m
w

ris the rank of A (i.e., the number of linearly independent columns)

Linear algebra parenthesis:

Linear algebra studies linear transformations, which are represented by matrices acting on vectors

A matrix can act on a vector by changing both its magnitude and its direction. On certain vectors,
the eigenvectors, a matrix acts only by multiplying their magnitude by a factor (the eigenvalue
associated with that eigenvector), which is positive if the vector direction is unchanged or negative if
the vector direction is reversed

An eigenspace is the set of all eigenvectors that have the same eigenvalue, together with the zero
vector

Figenvalues, eigenvectors and eigenspaces are properties of a matrix. They give important information
about the matrix and can be used in matrix factorization (decomposition)

The SVD of A is related to the eigenvalue/eigenvector decomposition:

U is a set of eigenvectors of the matrix AAT
Vis a set of eigenvectors of the matrix AT A

The diagonal elements of X are (in non-increasing order) the square roots of the eigenvalues of AAT
(or AT A)

Let V,, denote the submatriz obtained with the first k < r columns of V (e.g. the eigenvectors of AT A

associated with the k largest eigenvalues). The new k-dimensional features are obtained by:

with A, € R

The A, is the same dimension as A, but only takes into account the k first components

A==V’ A =L Br
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Clustering based on SVD; two options:

Use A, as input for a clustering algorithm (e.g., hierarchical clustering, k-means, ...)
Decide the number of clusters k and extract the first k£ columns of the matrix U:
o Each column of U represents a cluster
o Each real-valued entry ¢ of column j of U represents the membership of gene ¢ to cluster j

o Unlike k-means, genes are associated with multiple clusters (with varying membership degrees,

— fuzzy clustering)

IV.B.7 Supervised learning

Supervised learning is known as classification (or class prediction) Phenotype
Classes

The basic idea is to be able to predict the class label of an input sample (test sample) given
the prior knowledge of a set of labelled samples (training samples)

There are several techniques used in supervised learning:

Linear classifiers

k-NN (k-Nearest Neighbors)
SVM (Support Vector Machines)
ANN (Artificial Neural Networks)

Unlike unsupervised learning, the input feature vectors are typically the columns of the gene-experiment

matrix

The dimensionality (i.e., the number of features (genes) in each vector) is often huge, since it depends on

the number of genes assayed in a single microarray experiment.

We may want to reduce de dimensionality using the algorithms mentioned before (e.g., PCA).
However, we need to consider that the variable obtained after this decomposition are different from
the original values, and this does not facilitate the interpretation.

Instead, we apply some feature selection algorithm that do not combine together the original genes
but keep them separate, and only consider the one that have a significant contribution to the sample
in the classes they belong to

The sample size (i.e., the number of feature vectors (microarray experiments) is typically small

Many classification algorithms may benefit from pre-processing (e.g. SVD, i.e. PCA) to reduce the

dimensionality

Sample

Samples

it i li'lllll'lll."i
||!||I|“IIII 1o
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I matrix

Genes

Gene expression
levels
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IV.B.7.1 k-nearest neighbours
k-Nearest Neighbours classification technique:

1. Initialization
— Define k
— Define a distance metric

— Consider a set of labelled training samples

2. Given a test sample:
—  Compute the distance between the test sample and all training samples
— Retain the top k training samples sorted based on the distance from the test sample (k-Nearest
Neighbours)

— Each neighbour votes for its label: assign to the test sample the label that receives more votes

Characteristics:
—  Non-parametric (i.e., fitting of sample population to any parametrized distributions is not required)

—  Time-consuming (distances need to be re-computed for each test sample)

IV.B.7.2 Support Vector Machines
There are two types of Support Vector Machines (SVM):
— Linear SVM.:

o Work for linearly separable samples (two classes)

o Receive in input the original feature vectors

o Find the optimal hyperplane that separates the samples of the two classes
— Non-linear SVM:

o A non-linear mapping (kernel function) is applied from the original feature space (called
attribute space) to a higher dimensional target feature space (that can separate the data better)

o Linear SVM is applied in the target feature space

o Can often classify non-linearly separable samples

IV.B.7.3 Linear Support Vector Machines

For linearly separable samples, the linear SVM finds the hyper-plane that maximize the margin (i.e., the

distance of the decision boundaries (hyper-plane) from each sample)

A2 . _ direction 2

x,
° .
a ™ ~3
L] e ~
. 0% e’ J
....................... e ® @
g - __<_iin:c|i0n I
— e
—_— DD
\ %
= i pd
St o B ¥ o ok
% = 00, By *
%
X X

S | )
minimize J(w) = ;HwH"

subject to y,—{wrx; +wy) =1, i=12,....N
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For non-linearly separable samples, in linear SVM a loss factor is added to the cost function to account for
misclassified samples

— .

— e
Ty

N
L
minimize J(w, wy, = —lw||*+C i
(w, wo, §) = S lwl| les
subject to y,—[wa,- +wpl=1-&, i=12...., N
& =0, i=12,..., N

From the original (primal) problem:

N
e 1
minimize J(w, wg, ) = 5““’”2 +C ZE,'

i=l
subject to y,-[wa,- +uwpl=>1-&, i=1,2, ..., N
=0, i=12,..., N
We can write the dual problem:

R R R
Maximise Q. — E g 0,0Q 4 where @), = ?Jk.%(flf'k : wl)
k=1 k=1 I=1

DN | =

R
Subject to the constraint: V&, 0<a, <C, Zakyk =0
k=1

The data vectors enter the problem only in the inner product z,z;

Why is it useful to solve the dual instead of the primal problem?

— Dual problem is a QP (quadratic programming) [QP is a special type of mathematical optimization
problem; it is the problem of optimizing (minimizing or maximizing) a quadratic function of several
variables subject to linear constraints on these variables]

— there are several optimized algorithms to quickly solve QPs

— Using the “kernel function trick” (following illustrated), we are able to separate non-linearly
separable data

IV.B.7.4 Non-linear Support Vector Machines

Kernel function trick: Suppose to be in a 1D space:

® N = l Y 00 o0 o
L C X

Negative "plane”

X
Positive “plan
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... but data might not be linearly separable:

L ] L] Jl Q G LI ] L]

xl—D X

However, there could be a trick ... go from 1D to 2D:

z

z, = (x,,x;)

Now data is linearly separable in the 2D space:

z
.
../_y’/,,..
A 4
.;'."/ Zp = (X, X;)
"_(' -/_/"é
i
L] - o
X :,? X
Common SVM kernel functions (z,):
— 2, = (polynomial terms of x;, of degree 1 to q) : z,[j] = ¢;(xy) = (x4, T3, e xy)

(x),) = KernelFn (‘mf(—_v;]‘)

—  z, = (radial basis functions of xy,) : z;[j] = ¢,

— 2z, = (sigmoid functions of x;,)

Modified dual problem with kernel function:

R R R
. 1
Maximise Zak - 52 Zakalel ) where Q; = ykyl(¢<wk> ) @(%))
k=1 k=1 1=1

R
Subject to the constraint: V&, 0<a, <C, Zakyk =0
k=1

R; dot products must be done to get the matrix ready. Each dot product requires %2 additions and

multiplications where:
— R is the number of feature vectors (usually low)

— m is the dimension of the target space (usually high)
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The whole evaluation seems to cost @ operations ... But, if a proper kernel function ¢ is used, it can be

. 2 .
computed in RT’” operations

Example: Polynomial kernel of degree m

1 1
1
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Computing the inner product cost O(m?) ... but it is the same as:
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Cost: O(m?) vs.O(m)
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V. INTRODUCTION TO BIOLOGICAL NETWORKS

V.A Why networks in biology?

Biology studies complex systems such as cells. The properties of complex systems do not result from
single components alone, but mainly from their interactions.

For example, transcription from DNA to RNA is not explained only by the information in a DNA fragment
alone, but in relation with other molecules (e.g., transcription factors) that interact with DNA to
start /stop/regulate the transcription.

Models from complex networks theory provide useful representations of complex biological systems and allow
to understand them through their properties.

All biological processes can be modelled as networks since they occur thanks to interactions among molecules
(system biology):
— Proteins interact with each other, or with other molecules (e.g., DNA), generating and regulating
several mechanisms (protein networks)
— (enes encode for proteins; their interrelated activity determine protein abundance and related
processes (gene networks).

Nodes: Proteins = Y
: e et ;
Edges: Interactions hesees £S5 pa ¢ B
" - i LA IR f ~
(i.e. bonds) P g W AT o
i~ S i
W % Hrie j g s
IS e LR P 17 e w .=
. e *
L7 L% " L Wi
>
- (i
I’ G ‘72
4 : 3 <
i - {f?j ﬁ http:/fwww.imb-jena.de/tsbfyeast. htmi

http://www.macdevecantar.com/pub/a/mac/2004/08/20/bicinformatics. html

V.B Types of biological networks

In biology there are different types of networks that can be considered, some of them are:
— Protein networks — interactions between proteins
— Gene regulatory networks — interactions between molecular regulators within the cell
— Gene co-expression networks — associations between variables that measure the abundance of
transcripts
— Metabolic networks — biochemical reactions in a living cell
— Signalling networks — signals between cells or within cells
— Neuronal (not neural!) networks — connections between neurons in the brain.

V.B.1 Example of protein networks
Since protein-protein interactions are essential to almost every process in a cell, understanding them is crucial.

A protein-protein interaction network is a mathematical representation of the physical contacts between
proteins in the cell.
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Schizophrenia PPl network

Yeast PPl network
V.B.2

Example of gene regulatory networks

Gene regulatory networks represent mechanisms between molecular regulators that interact with each
other and with other substances in the cell. The molecular regulators can be DNA, RNA, proteins.

Usually, these networks are directed (from a source node to a target node). Different kind of edges may exist,
to represent different kind of interactions.
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The largest gene regulatory subnetworks in yeast: hitps://www.nature.com/articles/s41598-018-37667-4#Fig1
V.B.3

Example of metabolic networks

Metabolic networks describe the relationships between small biomolecules and proteins or enzymes that
produce biochemical reactions.

Usually in these types of networks, the small biomolecules constitute the nodes, whereas the proteins or
enzymes are the edges that allow the reaction.
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V.B.4 Example of gene co-expression networks

Gene co-expression networks represent the interconnectedness between genes. The nodes are the genes,
the edges are the co-expression relationships between them.
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Gene Coexpression Network of transcription factors and genes in postpartum NAC (nucleus accumbens in the brain)
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V.C Gene co-expression networks from gene expression data

Gene expression data can be seen as scores associated with each gene of each sample according to the gene
expression value.

The profile of expression values of a gene across considered samples can be visualized in a heatmap (as
shown below), where columns represent samples and colors represent gene expressions.

In the example heatmap below, the goal is to show the effect of a cancer disease; the fold change is used to
visualize differential expression.

Normal patient samples Cancer patient samples
NB. Normal and cancer

. samples are taken from
cene 1 || NRINEIRRNINNA § |- o of paicnts

We can compute a similarity measure among gene expression profiles and visualize the results as a gene
network. We identify genes with similar expression profiles, e.g., involved in the same process, i.e., related
to each other.

Normal cells from patients Cancer cells from patients

h - |

From the similarity matrices that we obtain by comparing one gene expression with the others, we can obtain
the gene co-expression network. The easiest way to do it is computing all the similarities and fix a threshold.

V.D Similarity measures

Most typical similarity measures:

— Pearson’s correlation (the most used one): measures the correspondence of two vectors (here genes).
It has the benefit of being scalable, i.e., it can be efficiently computed for large numbers of genes.
However, it is sensitive to outliers, and it assumes that the gene expression data follow a normal
distribution.

— Euclidean distance (for genes that are similar in their expression values and wide expressed):
measures the geometric distance between two vectors (here genes). It is not appropriate when the
absolute expression levels of functionally related genes are highly different. Furthermore, if two genes
have consistently low expression levels but are otherwise randomly correlated, they might still appear
close in the Euclidean space.
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— Mutual information: measures how much the information of a gene reduces the uncertainty about
the expression levels of another. It can detect non-linear relationships; however, sophisticated non-
linear relationships may not be biologically meaningful. In addition, the distribution of the data is
needed for the computation of the mutual information, and it needs many samples for a good estimate.

— Spearman's rank correlation: it is the Pearson’s correlation calculated for the ranks of gene
expression values in a gene expression vector. It is more robust to outliers, but it is less sensitive to
expression values and with small number of samples it may detect many false positives.

V.E Biological complex networks
Biological networks are complex networks. Any descriptive property of complex networks can be applied

A biological complex network can be analysed in multiple different ways through:

— statistical descriptive measures
— biomolecular annotation analyses

Here, we focus on statistical descriptive measures; biomolecular annotation analyses will be illustrated in the
practice on the analysis of controlled biomolecular annotations.

V.E.1 Complex networks

According to Wikipedia: In the context of network theory, a complex network is a graph (network) with
non-trivial topological features — features that do not occur in simple networks such as lattices or random
graphs but often occur in graphs modelling of real systems. The study of complex networks is a young and
active area of scientific research (since 2000) inspired largely by the empirical study of real-world networks
such as computer networks, technological networks, brain networks and social networks

What is a network? It is a series of components, systems, subsystems or entities linked /interacting to one
another. Entities are represented by N nodes (or vertices) and E edges (or links):

() ib)y

Networks can be classified according to edge properties: undirected (a,c) or directed (b); weighted (c) or
unweighted (binary) (a,b).
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Networks examples

Similar problems are found in different contexts, which leads to common theories, methods and algorithms:

The "directors network"” of The protein interaction
the Italian companies network of yeast
V.E.2 Adjacency matrix
An unweighted network of N elements is completely described by an adjacency matrix A of size N x NV
a;; =1, if link ¢ — j exists;  a,;; = 0, otherwise

vV, Vo vy Vs

w0 1 1 0 0

vw 1 0 1 1 0

=wv, 1 1 0 1 1

vw 0 1 1 0 1

v |O O 1 1 0

A is symmetrical if the network is undirected, asymmetrical if the network is directed.
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Typically, A has a small density: p = % (dir.) or p = N(NL—I)/Q (undir.)

A weighed network is described by the N * N weight matrix, W = [w;;]:

w;; > 0,if link ¢ — 7 exists, w;; = 0, otherwise

V.E.3 Topological measures of networks (avg., diam., clustering, centrality)

— Average distance (in a network, computed between each pair of nodes of the network)

The distance (A, B) between 2 nodes A and B of a network is the minimum number of edges between A
and B.

The average distance L of a network is the sum of all distances I(A, B) computed among every pair of nodes
of the network (that are linked...), normalized by the total number of node pairs:

—if \ ZA.BH”LB ) (for undirected /’
L= Bh =Sz network) « 9
IV LY — A —
e /.///
2. 5/(4.B) (for directed :‘_—__— ﬂ\.‘B

L=(4B)==wy network)

Here, we cannot move from A to B, so the distance is infinite, but the distance from B to A is 1

— Diameter (of a network)
The diameter D of a network is the maximum length among all [, ;:

Where [;; is the distance between node ¢ and node j, L is the average distance, and N is the total number of nodes
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— Clustering coefficient (of each node of a network and of an entire network)

The clustering coefficient quantifies the “local link density” of the network by
counting the triangles in the network.

y

How frequently, if we have the links j <> i and i <> [, then we also have the
link j <> [ (thus, the triangle j, 7, [)?

The (local) clustering coefficient ¢;, with 0 < ¢; < 1, of node ¢ is:

#triangles connected to i €.

(k; —1)/2

Where k; is the total number of connections that i has (in this example the 3
black lines) and neighbours of ey, is the number of links directly connecting Ci = / 10
the 4 (in this example the red lines)

¢

- #triplets j,i,1 centered on ik,

7

Once we decide that we want to compute the clustering coefficient of node i, we check to which other nodes
it is linked, and then we can “forget about ¢” and just check whether the other nodes are linked together

The (global) clustering coefficient C of a network is the average of the network c;:

C:<ci>:%;ci

ALy EF

Tree network: C =0 Complete network: C = 1
Network Size Clustering coefficient Average path length

ntemet, domanlevel [13) | 3270 0.2 356 [
ntemet, router level [13] | 22098 | 0.03 951
T wwpa | saw | o I 31
Email (15 | 6069 003 495
Software [ 16] 137 0.06 639
Electronic circuits [17] n 0.34 an
Lanquage [ 18] 460902 0,437 2.67
Movie actors [5, 7] 225226 0.79 3.65
Math. co-authorship [ 19] 70975 0.59 9.50
Food web [20, 21 154 015 340
Metabalic system [ 22 . 8 - 32

This table shows that for the networks that have a global clustering coefficient near 0 (resp. 1), they will
behave somewhat like tree (resp. complete) networks

— Centrality measures: degree, closeness, betweenness and eigenvector (of each node of a network)

The centrality of a node is a measure of its importance in the network, it is a ranking. All centrality measures
should provide more or less similar rankings, because they rely on the same network.

Degree centrality

The importance of a network node can trivially be captured
by the number k; of its neighbours (i.e., interactions,
communication channels, sources-destinations of
information, etc.).

Therefore, the network "hubs" are the most central nodes of
the network.
— For weighted networks: strength centrality

— For directed networks, the degree of a node can be
distinguished in out and in degree.
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Closeness centrality

A node of a network is central if, on average, it is close (i.e., has short distance) to all the other nodes of the
network: it has better access to the network information, more direct influence on other nodes, etc.

The average distance (number of nodes to access it) from node i to all the other n — 1 network nodes is:

1
The closeness centrality of a network node is defined as:
1 n-1

l; Zjdij

— If the network is directed, we must distinguish between in- and out-closeness of a node of the network

— If the network is weighted, several (non-trivial) generalized definitions of node closeness are available

Betweenness centrality

The betweenness b, of node i of the network is the fraction of shortest paths connecting all the pairs of
nodes of the network that pass through the node <.

b Z #shortest paths connecting j and k via © Zn]k(l)
i T #shortest paths connecting j and k = Mk

FEigenvector centrality

The eigenvector centrality -, of a network node is (proportional to) the sum of the centralities of the node
neighbours (i.e., a node is important if it relates to many and/or important nodes):

Y=o Z ;57
J

Where « is a constant and a;; are the network adjacency matrix (A) elements. Letting v = [y, 72, .., VN
and A =1, we obtain the eigenvector equation:

o’

]T

Ay =Xy

If the network is connected (i.e., A is not reducible to block upper triangular form by simultaneous
row/column permutations), the eigenvector centralities 7, are given by the only solution with A > 0,v >0
for all nodes ¢ of the network (Frobenius-Perron theorem).

V.E.4 Degree distribution (of a network)

The degree distribution P(k) of a network specifies the fraction of network nodes having exactly degree k
(i.e., the probability that a randomly selected node has degree k):

Pk) = #nodes with degree k Zp(k> _ 1
k

N )

It is often more practical to consider the cumulative degree distribution:

. k
= #nodes with degree > k  &X -
P(k) = ~ =Y P(h), Pk

h=k
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The r-moments of the degree distribution P(k) are:

<k >=>"KPk), r=12..
k

The first moment (r = 1) is the average degree:

Where E is the number of edges and N is the number of nodes in the network

Constant degree distribution defines homogeneous networks (all nodes have same degree). Yet, real world
networks do not have constant degree distribution:

network degree distribution
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V.F Networks models

Mathematical models of networks have been studied in the past to better understand complex networks in
general; some are:

— Regular networks (very distant from real complex networks)

— Random networks (very distant from real complex networks)

— Scale-free networks (real complex networks usually have such features)

— Small-world networks (real complex networks usually have such features)

V.F.1 Regular networks

They are not representative of the real-world network
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V.F.2 Random networks
Erdos-Rényi model is a mathematical model to generate random graphs. For example, this is a random
(Erdos-Rényi) network, with N = 100 nodes and E = 300 randomly extracted connections between node
300 _

pairs (hence average degree < k > = 2% {55 = 6).

Poisson Distribution

Pk}

For large N, the degree of random networks is Poisson-distributed with < £ > = %z

— The typical scale of the node degree distribution is k; = < k > (Poisson distribution centred in < k >)
— Node degree distributions have small fluctuations around < k >
— The network is almost homogenous

Erdds-Rényi model of random networks:

? { R i
© O—_ O— P~
o B N ;{“\‘* Iy &
R RN R
o} . .
o) o o O o) ) e
D g '
p=0 p=0. p=0.15 p=025

Start from a graph with N nodes and no links, and connect each pair of nodes i, j with a given probability
p. Pick a pair of nodes at random among the n nodes and add an edge between them if not already present;

repeat until exactly E edges have been added. Thus, p = 7N(?\£1)

Some properties for (N — 00):
— The degree is Poisson distributed, with < k> =p(N —1) =22

e <k>F
P(k>—€<>T

— The network has a giant component if < k > is larger than 1 (a giant component is a well-connected
part of the graph that contains almost all nodes, that means almost every node is reachable from
almost every other).

— The average distance L grows slowly with N.
— The clustering coefficient C' tends to 0 as N grows.

V.F.3 Scale-free networks

This is a scale-free network, obtained by adding one node at a time, and connecting it preferentially (i.e.,
with higher probability) to nodes with higher degree (Barabési-Albert algorithm). The network contains few
very connected nodes ("hubs") and many scarcely connected nodes.
For large number of nodes N, the degree distribution is a power-law function P(k) = k=

— node degrees have large fluctuations around < k >: there is no "typical" scale of node degree

— the network is strongly heterogeneous.
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Power-Law Distribution
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the air transportation network Facebook (721 million nodes, May 2011)

Examples of real degree distributions

Barabdsi-Albert algorithm (1999) is inspired by the WWW growth:
— initialization: start with m, nodes (arbitrarily connected).
— growth: at each step, add a new node z with m < m, new links connecting = to m existing nodes.
— preferential attachment: attach the new links preferentially (i.e., with higher probability) to nodes
with high degree (“rich get richer”): that is, let
the probability of connecting a new node x to an

existing node 7 be %, where k; is the degree of “ ‘q “ﬁ 4

node i and ) k; the sum made over all pre-
existing nodes (i.e. twice the current number of ‘% ﬁ%@" _,5%' %ﬁ” =

edges in the network)

Then, for N — oo and k the node degree:
— The average degree tends to < k > = 2F, and the degree distribution tends to the power-law P(k) = k=3

— < ky > and thus the variance < 0% > = < k> > — < k >? diverge (P(k) has a “heavy tail”).
log(IN)
log(log(N))

— The clustering coefficient C vanishes with ¢ & W —0

— The average distance tends to L ~
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V.F.4 Small-world networks

Small-world networks, according to Watts and Strogatz, are a class of networks that are “highly clustered,
like regular lattices, yet have small characteristic path lengths, like random graphs.”

Small-world network are model networks that account for clustering while retaining the short average path
lengths of the Erdds-Rényi graphs.

They are between a randomized structure close to Erdoés-Rényi graphs and a regular ring lattice. In 1998,
Watts and Strogatz demonstrated that adding a few long-distance connections to a regular network yields a
dramatic decrease of average distance L.

How to build a Small-world network?

1. Start from a regular “ring” graph with N nodes, where each node is connected to

the m right-neighbours and to the m left-neighbour (i.e., each node has exactly degree
2m).

The network has large clustering coefficient C' (typical of “regular” networks): C' = ZE:S’

and the average distance is also large (it grows linearly with N) L = %

2. “Rewiring”: Scan all nodes ¢ =1,2,..., N. Consider all the links ¢ <+ j connecting node ¢ to its right

neighbor nodes and, with rewiring probability p, break the connection to node j and redirect it to a
randomly selected node

5
@ o
==
A g
R
€= 2
2 =}
(&)
Reticolo ad anello Watts e Strogatz Rete casuale
e 0 - v
o O 1 k-l g AV P
q —0. P, G—Tal 0 oy
7 D - T4 ’
¥ % L
o o (55 H
A . it o
o w0 ; &L I B o
! u =
o ] et . E g
ot o] o 0 =
o S o . o a0
b g—c 23
p=0 O<p< 1 p=l -
L 0 Probabilita di ri- It p
Regular lattice Random graph collegamento casuale

If p is small, the local properties are not significantly modified:

— the degree distribution remains concentrated around the average degree (unchanged!) < k > = 2m
— the clustering coefficient C' does not change significantly

— but there is a dramatic decrease of the average distance as long-distance connections appear

In a suitable rewiring probability p interval, the network mimics many typical real-world networks, i.e., at
the same time:

— The clustering coefficient is large (from the regular lattice)
— The average distance is small (from the random network)
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V.G Biological examples

The majority of biological networks have scale-free properties and thus can be modelled as scale-free
networks. Here, an example of a protein-protein interactions network.

P(k) degree distribution

Number of nodes

degree

While most proteins participate in only a few interactions, a few participate in dozens (hubs). This is a typical
feature of scale-free networks. Each hub is associated with functionally different groups of proteins; therefore
clusters of proteins can be found through the hubs.

Other examples of scale-free organization include gene regulatory or gene co-expression networks,
where nodes are genes and links can be derived from gene expression correlations, e.g., computed on
microarray data.

V.G.1 Gene co-expression networks

Each gene is estimated on average to interact with four to eight other genes and to be involved in 10 biological
functions.

Gene co-expression networks (GCN) represent the interconnectedness between genes and connect pairs
of genes that are significantly similar/correlated. The nodes are the genes, the edges are the co-expression
relationships between them.

Densely connected sub-networks form gene modules (communities), usually related to biological
functions or biologically relevant traits.

The Guilt By Association (GBA) paradigm assumes that strongly co-expressed genes share functionalities.

Gene networks and particularly co-expression networks provide the potential to identify hundreds of genes
that are associated with complex human diseases and that could serve as points for therapeutic interventions.
This information is important for predicting the functions of new genes and finding genes that play key roles
in complex human diseases.

v
1

Gene co-expression network analysis of prostate cancer. A smaller edge indicates a higher correlation.
Nodes are coloured according to the modules in which they belong

V.G.2 Weighted gene co-expression network analysis

Based on the Guilt By Association (GBA) paradigm, genes with closely functional linkages or involved in
similar pathways may have similar expression profiles.
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The Weighted Gene Co-expression Network Analysis (WGCNA) is a popular systems biology strategy to
explore the system-level functionality of a transcriptome not only constructing gene co-expression
networks but also detecting gene modules and identifying hub genes within modules.

Also, WGCNA analyses the relationships between gene modules and sample traits to explore the biological
mechanisms behind certain traits. WGCNA has been widely applied to identify gene modules associated with
clinical annotations in many cancer diseases [see slides for references].

Pipeline
1. Construct a gene co-expression network represented mathematically

by a matrix, the element of which indicates co-expression similarity between
a pair of genes.

Gene Correlation Matrix

O B B B N N N RN R N
TR R 0

B OH B M MG m N T e
T T T T T T T T T T
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The matrix is either dichotomized
to obtain the adjacency matrix of
an unweighted network or
transformed continuously with
the power adjacency function in
a weighted network

SEtEuEEYERY

T
T T TR T
R T T A R ]

LT I T I T T I

In genomic data analysis, samples are assumed independent of each other and
WGCNA often uses the absolute value of Pearson correlation to measure the
magnitude of co-expression between genes.

Instead of  dichotomizing gene co-expression (connected =1,
unconnected =0), WGCNA uses a ‘soft’ threshold to determine the weights
of the edges connecting pairs of genes, which has been proven to yield more
robust results than unweighted networks. According to the “scale free
topology criterion” in Zhang and Horvath (2005), an appropriate soft -~
threshold makes the resulting co-expression network closer to a scale-free

Gene Co-expression Network
network.

Power adjacency function to obtain a weighted gene co-expression network: a,;; = ’cor(wi, xj)‘ﬂ

2. Identify modules using hierarchical clustering: WGCNA uses a topological overlap matriz and
dissimilarity measure to obtain modules, that can be biologically meaningful in real data analysis.

Za}.” a,; +a;

(] ‘. T()M” — ‘ i
| © o omin(k k) +1-a; .
EETTTS T e — Dig{TOjWﬁ =1- T().M'J.J. 2

FNES R

WGCNA hierarchical clustering works with a bottom-up approach: each gene starts in its own cluster and
clusters are then joined by merging the two most similar clusters together, iteratively.

A tree-like structure, known as a dendrogram, is produced and branches of the hierarchical clustering
dendrogram, corresponding to gene modules, can be identified using the dynamic tree cut method.
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Cluster tree and branch cuts
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3. Relate modules to phenotypic and/or clinically relevant traits:

One can test the association between the module eigengene (ME - first principal component of the module)
and the trait.

One can also use the module significance (MS), which is defined as the average gene significance (GS) to a
trait of all genes in the module. The GS of a node is the correlation between the node and the trait, while
the module membership (MM) of a gene i (MM (i) = cor(z,;, ME)) measures the importance of the gene within
the module.

Modules with high trait significance may represent pathways associated with the trait.
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4. Study inter-module relationships and module preservation:

WGCNA uses ME as a representative profile of a module and quantifies module similarity by eigengene
correlation: studying the relationships of the modules can help to find which modules are highly related and
can be merged.

Testing module preservation requires to assess whether similar network modules can be constructed using
other data: studying module preservation can help to find which modules are more interesting and to check
robustness of module definition

A 1.0 o
0.8-
F os-

o

L 0.4-

0.2 1

e il

Dynamic tree cut |

Merged dynamic

Gene clustering dendrogram

The first colour band indicates the modules detected by dynamic tree cut. The second colour band indicates
the modules after merging similar modules (e.g., having the height of ME lower than 0,25)
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The smaller preservation Median Rank is associated with a stronger preservation. An integrated function of

WGCNA package for module preservation was used to calculate the preservation ( = 100) and

N permutations

the Z summary score (Z score).

In right graph, the dashed blue and green lines indicate the thresholds Z = 2 and Z = 10, respectively.
The Z score lower than 2 indicates the modules has no preservation; 2 to 10 indicates low to moderate
preservation and higher than 10 indicates strong preservation.

5. Find key drivers in interesting modules:

Hub genes can be traces through centrality analysis. Hub genes can also be corresponding to the nodes having
higher module memberships and gene significance.
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several types of centrality. (A) degree
centrality; (B) clustering coefficient; (C)
betweenness centrality; (D) closeness
centrality

whereas yellow indicates the lowest rank.

5 hub genes were found to be common in Hub genes based on MM {module membership),
all the cases and considered as significant GS (gene significance), reporting also fold
hub nodes of the module change of differential expression (as Log2 ratio)

V.G.3 Open issues in WGCNA

WGCNA only looks at co-expression across all samples. As transcriptional regulation is highly context
specific, clustering potentially misses local co-expression effects which are present in only a subset of all
biological samples.

WGCNA is unable to assign genes to multiple modules. The issue of overlap between modules is
especially problematic given the increasing evidence that gene regulation is highly combinatorial and that
gene products can participate in multiple pathways.

WGCNA does not account for other kinds of links like regulatory relationships between genes. As the
variation in target gene expression can at least be partly explained by variation in transcription factor
expression, including this information could therefore boost module detection.

WGCNA relies on hierarchical clustering for module identification, while other interesting community
detection techniques could be used
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VI. BIO-TERMINOLOGIES AND BIO-ONTOLOGIES
VI.A Introduction

Huge growth in online biomedical data sets:
— Genomics (genetic sequences, SNPs)
— Gene expression microarrays
— Proteomics (mass spectrometry, protein arrays)
— Tissue arrays

Need for people and machines to make sense of massive data sets
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Bio-terminologies and bio-ontologies have an important role in e-science

—  Formal and explicit declarations of the entities and relationships |[ @ phenctype ontology
— Built by humans, processed by machines P @ adipose tissue phenotype
_ CapabilitieS' P © bhehaviorineurological phenatype
. P © cardiovascular system phenotype
o Relate disparate data
] o . ) b © cellular phenotype
o Enable data interoperability, data summarization, data | vy @ central nervous system phenotype
minmng p @ abnormal central nervous system morpl
Several bio-terminologies and bio-ontologies are being developed and V9 A0 ot DSYUE ATION phiye
P @ seizures
used to: ) )
P @ intracranial hemorrhage
— Define, describe, and suitably identify information ® spinel hemoitiage
— Favour information management and analysis with: ¥ @ abnormal brain development

o Integration of sparse and heterogeneous information
o Identification and grouping of “similar” bio-sequences
o Statistical analysis and data mining of controlled annotations to:
= Highlight most relevant biological features
= Help unveiling knowledge from data
— Support translational research (to quickly bring in the clinical practice new biomolecular knowledge)

VI.A.1 Bio-terminologies
Collections of terms, precise and universally comprehensible, that univocally define and identify different
concepts
— Useful for knowledge analysis and sharing
—  Controlled: defined and maintained by groups of experts
— Increasing number, coverage and use in molecular biology and biomedicine:
o Biochemical and metabolic pathways (KEGG)
o Protein families and domains (Pfam)
o Genetic diseases (OMIM)
o Biological processes, molecular functions, cellular components (Gene Ontology)

Very useful to enhance gene lists with biological information

Théo Saulus Page 159 of 204 Politecnico di Milano, winter 2021



Prof. Marco Masseroli

VI.A.2

Logical structures used to represent knowledge, in a specific domain,
through a graph structure composed of:

— a set of elements, the graph nodes, representing the domain
concepts
— relations

among domain concepts,

Semantic networks

representing the knowledge of the domain

Also a reasoning tool: relations can be found between concepts not
directly related

the

Bioinformatics and Computational Biology

graph arches,

It can be implemented in software and automatically processed

A type of arch for each type of relation
Main relations: IS_A, PART_OF:

TATHL

-t ahata e il ‘

— Model hierarchical knowledge with concepts related at different levels of specification

— Their transitive property can be used to make useful inferences

Molecule Protein
lf IS A T PART OF
Protein Amino acid

IS_A allows attribute inheritance among related concepts (which can help to discover new relations):

Organism

.

Cell

DNA

Organism

DNA

Other specific relations: EXPRESSED_BY, REGULATED_BY, ASSOCIATED_WITH, ..
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Mouse

VI.A.3 Bio-ontologies

Several definitions of an ontology exist:

Ontologies are semantic structures used to:

Bioinformatics and Computational Biology

Organism
o T An example ....
Cell
—
Fibrablast DNA Malecule
SN
Gene CODEFY Protein
—————————— >
FD 2
BRCAL EGF Grow Factor Cytokine
>

“A specification of a conceptualization” (Gruber, 1993)

“A partial specification of a conceptualization” (Guarino, 1998)

“The subject of ontology is the study of the categories of things that exist, or may exist, in some
domain. The product of such a study, called an ontology, is a structured catalog of the types of things
that are assumed to exist in a domain of interest D from the perspective of a person who uses a
language L for the purpose of talking about D. [...]” (Sowa, 1997)

“We use the term ‘ontology’ in what follows to refer to any theory or system that aims to describe,
standardize or provide rigorous definitions for terminologies used in the domain” (Smith 2003)

Describe the knowledge of a domain in a teztual and computable form

Standardize and provide rigorous definitions for the terminology used in the domain (bio-

molecular/biomedical)

Composed by a controlled (bio-)terminology and a semantic network

Very useful for automatic classification and inference

Mouse Organism
=
* An example ...
Fibroblast Cell
—
DNA Molecule
/—ﬂT—D <
BRCA1 Gene CODIFY Protein
—————————— >
K
—"
q—‘
EGF Grow Factor Cytokine
—"
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VI.A.4 Bio-ontology issues

Ontology development is fragmented:
—  Separate communities of biomedical researchers creating and maintaining ontologies
— Different model organism databases using ontologies to annotate experimental data
— Bioinformaticians creating algorithms to analyse these annotations
— These activities are not unified and produce often not matching ontologies; unification could allow:
o Integration of each other and with other data
o Cross-species analysis

Problems facing ontology content curation:
— Many different groups/consortia create ontologies; their efforts are uncoordinated
— Many different ontologies, overlapping content and variable quality
— Ontologies are not interoperable
— Ontology (and terminology) mapping efforts are laborious
o Constitute barriers to accessing, effectively using and expanding data repositories

Problems facing experimental data annotation (i.e., controlled description of experimental data features):

—  Growing amount of data of biomedical resources annotated with
ontologies (MGED, GO, BioPAX), but:
o Current resources confined to using single ontology for
annotations
o Difficult to relate different annotation repositories to each
other
— Data integration efforts are laborious and made difficult by mapping
difficulties

VI.B National Center of Biomedical Ontology

The US National Institute of Health (NIH) has funded the National Center of Biomedical Ontology
(NCBO) (http://www.bioontology.org/)

— Mission: Advance biomedicine with tools and methodologies for the structured organization of
knowledge

— Strategy: Develop, disseminate, and support:
o Open-source ontology development and data annotation tools
o Resources enabling scientists to access, review, and integrate disparate knowledge resources

VI1.B.1 Resources

Open Biological and Biomedical Ontologies (OBO): (http://www.obofoundry.org/): An integrated
virtual library of biomedical ontologies

Open Biomedical Database (OBD): An online repository of OBO annotations on experimental data
accessible via BioPortal

BioPortal (http://bioportal.bioontology.org/): A Web-based portal to:
— Allow investigators and intelligent computer programs to access and use OBO
— Use OBO to annotate experimental data in OBD
—  Visualize and analyse OBO annotations in OBD
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VI.C Open Biological and Biomedical Ontologies

The OBO Foundry (http://www.obofoundry.org/) is an open, inclusive and collaborative experiment
involving developers of science-based ontologies aiming at:
—  Establishing principles for ontology development
—  Supporting community members who are developing and publishing ontologies in the biomedical
domain
— Defining a set of orthogonal, fully interoperable reference ontologies in the biomedical domain by
virtue of:
o Common design philosophy and implementation
o Sharing of unique identifier space
o Inclusion of definitions
— Enabling scientists and their instruments to communicate with minimum ambiguity

Ontology driven interoperability of bio-knowledge databanks

VI.C.1 Documentation

OBO documentation:

— Paper: The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration
http://www.nature.com/nbt/journal/v25/n11/full/nbt1346.html

— The OBO Foundry wiki: http://www.obofoundry.org/wiki/index.php/Main_ Page
— Introduction to Biomedical Ontologiesz http://bioontology.org/wiki/index.php/Introduction__to_ Biomedical _Ontologies
— Presentations:

o Moving Beyond Ontology Libraries http://virtualgenomics.org/vegh/talks/RubinVirtualGenomicsConf.ppt

o US National Center for Biomedical Ontology (cBiO)
*  http://www.xmdr.org/presentations/Natasha-NoycBIO-Oct-2005.ppt
»  http://protege.stanford.edu/conference/2006 /submiss ions/slides/2.1_Rubin.pdf
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VI.C.2 Related projects [additional material]

The Microarray Gene Expression Data (MGED) Society (http://mged.sourceforge.net/), now the
Functional Genomics Data (FGED) Society (http://www.mged.org/) is an international organization of
biologists, computer scientists, and data analysts that aims to facilitate the sharing of microarray data
generated by functional genomics and proteomics experiments

The Ontologies for Biomedical Investigations (OBI) project (http://obi.sourceforge.net/) is developing
an integrated ontology for the description of biological and medical experiments and investigations. This
ontology will support the consistent annotation of biomedical investigations, regardless of the field of study

The Human Proteome Organisation (HUPO) Proteomics Standards Initiative (PSI)
(http://www.psidev.info/index.php?q=node/258) defines community standards for data representation in
proteomics to facilitate data comparison, exchange, and verification. It is also compiling guidelines for the
development of controlled vocabularies

Standards and Ontologies for Functional Genomics (SOFG) (http://www.sofg.org/) is both a meeting
and a website; it aims to bring together biologists, bioinformaticians, and computer scientists who are
developing and using standards and ontologies with an emphasis on describing high-throughput functional
genomics experiments

VI.C.3 OBO ontologies

To be part of OBO, an ontology must be:
— Open: accessible to everyone without any constrain
o Its origin must be recognized
o Subsequent modifications must be distributed under different names and identifiers

— Expressed in a common and shared syntax (OBO syntax, its extension, or in OWL (Web Ontology
Language)), in order to ease use of the same tools and shared implementation of software applications

— Clearly specified and with a well-defined content: each ontology must be orthogonal to the other
OBO ontologies

— Not overlapping other OBO ontologies: partial overlapping can be allowed to enable combination
of ontology terms to form new terms

— Able to include textual definitions of all terms: since several biomedical terms can be
ambiguous, the concepts they represent must be precisely defined with their meaning within the
specific ontology domain they refer (which must be also specified)

—  Well documented

OBO ontologies tackle several different biological aspects:
— Organism taxonomies
— Anatomies
—  Cell types
—  Genotypes
— Sequence attributes
— Temporal attributes
— Phenotypes
— Diseases

Mature ontologies undergoing incremental reform:

— CL: Cell Ontology (http://obofoundry.org/cgi-bin/detail.cgi?cell)

—  GO: Gene Ontology (http://www.geneontology.org/)

— FMA: Fundational Model of Anatomy (http://fma.biostr.washington.edu/)

— ZAO: Zebrafish Anatomical Ontology (http://zfin.org/zf info/anatomy/dict/sum.html)
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Mature ontologies still in need of thorough review:
— ChEBI: Chemical Entities of Biological Interest (http://www.ebi.ac.uk/chebi/)
— DO: Disease Ontology (http://diseaseontology.sf.net/)
— PO: Plant Ontology (http://plantontology.org/)
— SO: Sequence Ontology (http://www.sequenceontology.org/)

Ontologies for which early versions exist:
— OCI: Ontology for Clinical Investigations (http://www.bioontology.org/wiki/index.php/CTO:Main_ Page)
— CARO: Common Anatomy Reference Ontology (http://obofoundry.org/cgi-bin/detail.cgi?caro)
— EO: Environment Ontology (http://www.obofoundry.org/cgibin/detail.cgi?id=envo)
— OBI: Ontology for Biomedical Investigations (http://obi.sf.net/)
— PATO: Phenotypic Quality Ontology (http://www.obofoundry.org/cgi-bin/detail.cgi)
— PRO: Protein Ontology (http://pir.georgetown.edu/pro)
— RO: Relation Ontology (http://obofoundry.org/ro)
—  RnaO: RNA Ontology (http://roc.bgsu.edu/)
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VI.D The Gene Ontology

The Gene Ontology (GO) (http://www.geneontology.org/) project is the result of a collaborative effort
to address the need for consistent and species independent descriptions of gene and protein features in distinct
biomolecular databanks (e.g., gene involved in protein synthesis vs. translation)

Started in 1998 as a collaboration between three model organism databases and their curator labs: Drosophila
Melanogaster Database (FlyBase - http://flybase.org/), Saccharomyces Genome Database (SGD
http://www.yeastgenome.org/), and Mouse Genome Database (MGD - http://www.informatics.jax.org/)

The GO Consortium has now grown to include several of the major repositories for plant, animal, and
microbial genomes (http://www.geneontology.org/GO.consortiumlist.shtml?all)

VI.D.1 Structure
The Gene Ontology (GO) is the bio-ontology most developed and used to describe gene and protein features
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Provides 3 controlled terminologies (terms, or categories, + relationships) to describe biological
characteristics of genes and proteins (biological processes, molecular functions, cellular components)

The GO has a Directed Acyclic Graph (DAG) structure:

Like a hierarchical tree (a child specifies the parent), but in a DAG a child node (term) can have
many parent nodes (terms)

Nodes are connected by oriented arches without cycles

A node can be at different levels simultaneously

Lower levels indicate generality, upper levels specialization of the represented concept

Arches represent relationships between categories, mainly 2 types of relationships: IS_A, PART_OF

Each GO concept has associated:

ID (unique and required)

Name (unique and required)

Definition (optional, soon required but unique)

Synonyms (optional, can be more than one)

Reference databases (optional, can be more than one)

Relationships (“IS_A”, “PART_OF”, or others recently added, e.g., REGULATES)

VI.D.2 DAG examples
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The concept of node level is not unique

GO DAG structure reflects underlying biological complexity

VI.D.3 Statistics
As of October 31st, 2021, the GO includes (http://geneontology.org/stats.html):

— 43,832 terms, 100.00% with definitions, subdivided in:
o 28,484 Biological Process (65.25%)
o 11,166 Molecular Function (25.28%)
o 4,182 Cellular Component (9.48%)

Additionally, there are 3,394 obsolete terms (7.74%) not included in the above statistics

Terms inthe three Gene Ontologies

B piological Process ®Molecular Function B Cellular Component
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For each one of the three Ontologies there are many Categories on different levels of the GO hierarchy
N. of Ontology Categories per level

[level |

Biological Process

Cellular Component

Molecular Function

R 1 1

1 — 7 15 [____BE

2 |7 I 1 52 I 1 ]

3 |2 I I 3
4|50 144 I 353
[5 | ———— 07 2 — FEEL) 77 2
L e — — N
7 <S4 I | 57 O {70
8 747 5 | | 336 7 53

9 I | 52 I O

10 | 3 | %P 1 56

11 | 1991 | — 542 N 6
12— 1067 I — 0

13 | 7 I |57 — 3C

14 | 02 I 35 — 12

15 | — 147 . 3 (

16 | I 0 0

17 | E—1% 0 o

The most developed ontology is the biological processes one

VI.D.4 GO browsers

Some GO browsers have been built to help visualizing the complex GO DAG structure:
— EMBL-EBI QuickGO (http://www.ebi.ac.uk/ego/)
—  AmiGO (http://www.godatabase.org/cgi-bin/go.cgi)
— Mouse Genome Informatics (MGI) GO Browser http://www.informatics.jax.org/searches/GO__ forms.html
— Expression Profiler GO Browser
o http://www.bioinf.ebc.ee/EP /EP/
o http://www.ebi.ac.uk/microarray-srv/EP /cgi-bin/ep_ ui.pl
All offer textual search tools in the GO vocabularies and graphic visualization of the DAG of the retrieved
terms

VI1.D.5 Annotations

Annotation: association of a gene (or gene product) with a biomedical/biomolecular concept (term/concept)
Each gene (or gene product) is associated with more terms (has more features)

Each term (category) is assigned to many genes (or gene products) (many genes (gene products) have same
features)

Annotations can be assigned in different ways:
— Human curated (assigned by experts)
—  Computationally (automatically predicted, with or without human supervision (curation))

Ontological annotations must be assigned by associating genes (or gene products) with the most specific
terms describing their features

When a gene (or gene product) is annotated (associated) to a GO term (i.e., identified as having the feature
described by the term), it is implicitly annotated also to the parent terms (describing more general features)
(true path rule, or annotation unfolding)
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Note that:
— In an ontology, node (term) properties are inherited from root to leaves (i.e., specific concepts have
the properties of their more generic concepts)
— Ontological annotations are unfolded from leaves to root (i.e., if a gene has a specific property, it has
also the more general one)

Example (not biomolecular) of annotation and annotation unfolding vs. term property inheritance:
—  Excerpt of the “car ontology”:
o Car; Sport car; Ferrari (a Ferrari is_a Sport car; a Sport car is_a Car)
“Having a steering wheel” is a property of the concept identified by the term Car
o For property inheritance, it is also a property of the concept identified by the term Ferrari
— Let X-0344-DS2134 be the chassis number of a Ferrari (annotation of the object with ID X-0344-
DS2134 to the ontology term Ferrari)
o For annotation unfolding, the object with chassis number X-0344-DS2134 is a car, in
particular a sport car

Evidence (quality) codes exist for each annotation (http://www.geneontology.org/GO.evidence.shtml):

—  Automatically assigned evidence codes:
o IEA (Inferred from Electronic Annotation): annotation based on automatic computation
(lowest quality)
—  Manually assigned (curated) evidence codes:
o Experimental: (e.g., EXP: Inferred from Experiment)
o Computational analysis (e.g., ISA: Inferred from Sequence Alignment)
o Author statement: (e.g., TAS: Traceable Author Statement)
o Curatorial statement: (e.g., IC: Inferred by Curator)

Manually assigned (curated) evidence codes:
— Experimental EXP: (Inferred from Experiment), better to use one of the more specific experimental
codes:
o IMP: (Inferred from Mutant Phenotype)
o IGI: (Inferred from Genetic Interaction)
o IPI: (Inferred from Physical Interaction)
o IDA: (Inferred from Direct Assay)
o IEP: (Inferred from Expression Pattern)
— Author statement:
o TAS: (Traceable Author Statement)
o NAS: (Non-traceable Author Statement)
— Computational analysis:
o ISS: (Inferred from Sequence or structural Similarity)
= ISA: (Inferred from Sequence Alignment)
=  ISO: (Inferred from Sequence Orthology)
= ISM: (Inferred from Sequence Model)
o IGC: (Inferred from Genomic Context)
o RCA: (inferred from Reviewed Computational Analysis)
— Curatorial statement:
o IC: (Inferred by Curator)
o ND: (No biological Data available)
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Term (evidence) hierarchy:

o TAS/IDA

o IMP/IGI/IPI
o ISS/IEP

o NAS

o IEA

Bioinformatics and Computational Biology

GO also provides a “modifier” of the annotation, a “qualifier” field that can assume values such as:
CONTRIBUTES_TO, COLOCALIZES_WITH, or null

But also “NOT” and NOT_CONTRIBUTES_TO! Be careful to also consider the qualifier field (useful also for ML
algorithms)

Experimental
(wet lab)
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Each annotation is represented by a record including:

Gene (or gene product) ID
Gene Ontology ID

Author statement
(Comp\muoml method] ( foom publication ( No evidence is available J
Will each annotation be individually Is annotation based on an Is there a GO annotation in another
reviewed and confirmed by a author statement that aspect that allows you to make an
human annotator? cites a published reference Inference based on that GO term for
as the source of information? an aspect without evidence?
no
\-b. U s
= Y Y
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cite a published reference annotation in a given GO aspect?
yes as the source of information? [see note on use of ND)
o \ !
Does the computation include
lon of the g
context of the gene?
no M B Curator reviewed annotations
Y B3 Annotations NOT reviewed by a curator
Is the computation an integrated
m"m’“ 1,,.:““'3"" Note on use of ND evidence code:
Including multiple data types? Unlike the other evidence codes, the ND code does not indicate a method from a specific
f Rather, it indicates that the annatator looked at the available information and

=@

determined that nothing is known about the gene product for a given aspect of GO
(molecular function, biological process or cellular component). The annotator will always
Iookaul avallable Ituaurel’orhgeml)cpenﬁmoatm resources and the annotation
by of the g group, may also look at sequence comparison
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GO Evidence Code Decision Tree

Reference ID(s) (e.g. PubMed ID(s))

Evidence code(s)

Evidence modifier (Qualifier)

ProteinID GO ID
P05147 GO:0047519

IDA

Evidence code PubMed ID

Qualifier
PMID:2976880 null

or

ProteinID GO ID
Po8194 GO:0005388

IDA

Evidence code PubMed ID

Qualifier
PMID:16192278 NOT
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VI1.D.6 Documentation

Gene Ontology documentation available at:
— http://www.geneontology.org/GO.contents.doc.shtml?all
— http://www.geneontology.org/GO.teaching.resources.shtml

Including:
— GO for newbies
— Introduction to the Gene Ontology Project
— Introduction to the Gene Ontology, AmiGO and GO website tutorial
— Introduction to GO and OBO
— Open Biomedical Ontologies
— The Gene Ontology and its insertion into UMLS

VI.LE Examples of bio-terminologies

Beside those that are part of the bio-ontologies (such as the Gene Ontology and the OBO ontologies), several
controlled vocabularies constitute bio-terminologies used in some databases to describe:

— Pathways (e.g., in KEGG db)
— Protein families and domains (e.g., in Pfam, InterPro db)

Several of these controlled vocabularies (e.g., KEGG pathways, ...) are being enhanced with simple hierarchical
(i.e., is-a) relationships, formally constituting an ontology (although with a simple structure)

NB: in bioinformatics, not a lot of bio-terminology exist anymore, because most of them have been
transformed in ontologies

VI.F Unified Medical Languages System

Numerous different controlled vocabularies exist especially in the biomedical domain, besides in the
biomolecular one:

— ICD-9, ICD-10

— ICD-9-CM

— CPT, HCPCS

— LOINC

- NDC

— SNOMED, SNOMED III, SNOMED-RT
— READ, SNOMED-CT

— MeSH

— MedDRA

— NCI Thesaurus

Such medical and clinical terminologies were created in different times by different associations for different
purposes, but:

— Some concepts they define are the same
— Often different controlled terms are used in each terminology to define the same (or similar) concept

For data and knowledge description, integration and interoperability matching are required. Therefore,
matching textual descriptions (even controlled) is difficult

The Unified Medical Language System (UMLS) was created and is maintained (by the US National
Library of Medicine) as a support for integration of biomedical textual annotations scattered in distinct
databases
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VI.F.1 Documentation

Resource documentation:
— UMLS: http://www.nlm.nih.gov/research /umls/
— UMLSKS: https://uts.nlm.nih.gov/home.html
— NLP and Lexical Tools: http://lexsrv3.nlm.nih.gov/Specialist/Home/index.html

Tutorials:
— The Unified Medical Language System. What is it and how to use it? - 2004
(http://www.nlm.nih.gov /research/umls/presentations/2004 -medinfo_ tut.pdf)

—  Unified Medical Language System® (UMLS®) Basics 2007
(http://www.nlm.nih.gov/research /umls/pdf/UMLS__ Basics.pdf): more updated but not so clear;
also online version (http://www.nlm.nih.gov/research/umls/user__ education/)

— The Unified Medical Language System: What is it and how to use it? - 2007, Bodenreider O.

(http://mor.nlm.nih.gov/pubs/pres/20071204-K AISTtutorial.pdf): brief and clear
VI.G The UMLS — KAIST tutorial

VI1.G.1 Introduction

Motivation:

— Started in 1986

— National Library of Medicine

—  “Long-term R&D project”

— Complementary to IAIMS (Integrated Academic Information Management Systems)
« [..] the UMLS project is an effort to overcome two significant barriers to effective retrieval of machine-
readable information. The first is the variety of ways the same concepts are expressed in different
machine-readable sources and by different people. The second is the distribution of useful information among
many disparate databases and systems. »

The UMLS in practice:
— Database:
o Series of relational files
— Interfaces:
o Web interface: Knowledge Source Server (UMLSKS)
o Application programming interfaces (Java and XML-based)
— Applications
o lvg (lexical programs)
o MetamorphoSys (installation and customization)
o RRF browser (browsing subsets)

The UMLS is not an end-user application!

VI.G.2 What is the UMLS? Overview through an example

Example of Addison’s disease
— Addison's disease is a rare endocrine disorder
— Addison's disease occurs when the adrenal glands do not produce enough of the hormone cortisol
— For this reason, the disease is sometimes called chronic adrenal insufficiency, or hypocortisolism
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Clinical variants:

— Primary/Secondary
o Primary: lesion of the adrenal glands themselves

Bioinformatics and Computational Biology
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o Secondary: inadequate secretion of ACTH by the pituitary gland

— Acute / Chronic

— Isolated / Polyendocrine deficiency syndrome
Symptoms:

— Fatigue

—  Weakness

— Low blood pressure

— Pigmentation of the skin (exposed and nonexposed parts of the body)

In medical vocabularies:

Synonyms: different terms

o Addisonian syndrome ] eponym

]

e Bronzed disease
e Melasma addisoni
e Asthenia pigmentosa

symptoms

e Primary adrenal deficiency

» Primary adrenal mnsufficiency

® Primary adrenocortical msufliciency
e Chronic adrenocortical msufficiency |

clinical
variants

Contexts: different hierarchies

Organise terms:
— Synonymous terms clustered into a concept

— Preferred term
— Unique identifier (CUI)

! Addison Disease MeSH D000224
i Primary hypoadrenalism MedDRA 10036696
: Primary adrenocortical insufficiency  1CD-10 E27.1 :
|Addison‘s disease (disorder) SNOMED CT 363732003 J

C0001403

Addison’s disease
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MedDRA SNOMED CT (native)

Endocring disonders Disorder of endoctine system.

MeSlI | Disease |

Erdocnne system dissasss

Adreral gland disarders Diserder of adrenal gland

[hacrder of
adrenal cartex

| Adrenal cortical hypofunctiona Adrenal cortical rypofunchion

o
Endocrine, nutriional
NCT Thesaurus ICD-10 and melabolic diseases

SNOMED CT (UMLS view)
{ Endocrine Disorder . :
Disorder of endocrine system Disorders of ofher
I endocri_ne glands

Nor-neoplastic

endcerine disorder

o Adrenal gland disorcer |

Dhsorder of adrenal gland fi
Kor-neoplastc
adrenal gland disarder
I _
: \ £drenal gland

Adrenal giand_ :

Other disorders of
adrenal gland

Chaorder of
hypofuncicn ‘ adrenal corle msutficiency
Adrenal cartal hypofuncticn | Adrenal cortical ingufficioney

I Frimary adrenccortical insufficiency

Organise concepts :

¢ Inter-concept /& © 3
relationships: hierarchies
from the source B\D\E\ER (E]F(H) @E
vocabularies @)A@
¢ Redundancy: multiple & "
paths NE

¢ One graph instead of
multiple trees
(multiple inheritance)

Disease
¥ : _
l UMLS view P Disease e taiaal ]
| Endocrine system diseases i metabalic disorder
'"'|‘ Immune sysiem diseases ]
| Disorders of ofher
| endogrine glands

Adrenal gand diseases |~

\
| ___M__boil _ s ﬂ WJ Adrenal gland Adrenal cortex [ Other disorders of
hypofuncti de adrenal gland

Adrenal gland Adrenal cortex

hypofunction diseases e
SNOMED CT SN / | Adrenal cu-ue?lhypduﬂm |
SNOMED Intl : .
MeSH Adrenel cotical hypohrction |
MedDRA ; i

Tuberouous ‘ ‘ Addison's discase
Addigon's disease due to autommunity
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Relate to other concepts:
— Additional hierarchical relationships
o link to other trees
o make relationships explicit

Non-hierarchical relationships
— Co-occurring concepts
— Mapping relationships

Categorise concepts

¢ High-level categories
(semantic types)

& Assigned by the

Disease or Syndrome

Metathesaurus editors

¢ Independently of the | Endocrine Diseases |
hierarchies in which these f
concepts are located ‘ Adrenal Gland Diseases ‘

[

| Adrenal Gland Hypofunction |

Addison’s Disease

How do they do that?
— Lexical knowledge

— Semantic pre-processing
— UMLS editors

Lexical knowledge:

Adrenal gland diseases
Adrenal disorder

Disorder of adrenal gland
Diseases of the adrenal gland
C0001621

Semantic pre-processing
— Metadata in the source vocabularies
— Tentative categorization
— Positive (or negative) evidence for tentative synonymy relations based on lexical features

Additional knowledge: UMLS editors

| Adrenal gland diseases

L

Adrenal gland Adrenal cortex Other disorders of
hypofunction diseases

| Adrenal cortical hypofunction |

Addison’s Disease
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UMLS Summary:
— Synonymous terms clustered into concepts
— Unique identifier
— Finer granularity
— Broader scope
— Additional hierarchical relationships
— Semantic categorization

VI.G.3 UMLS Metathesaurus
& SPECIALIST Lexicon

e 360,000 lexical items o Tesical
e Part of speech and variant information " resources
& Metathesaurus '
e 6M names from over 100 terminologies . Terminological
e 1.5M concepts resources
e 8M relations L .
& Semantic Network _ Ontological
@ 135 high-level categories | resources
e 7000 relations among them A

Metathesaurus basic organisation:
—  Concepts
o Synonymous terms are clustered into a concept
o Properties are attached to concepts, e.g.,
= Unique identifier
= Definition
— Relations
o Concepts are related to other concepts
o Properties are attached to relations, e.g.,
= Type of relationship
*=  Source

Source vocabularies:
— 141 source vocabularies (17 languages)
— Broad coverage of biomedicine
o 6.1M names
o 1.5M concepts
o 8M relations
— Common presentation

Biomedical terminologies:

— General vocabularies
o anatomy (UWDA, Neuronames)
o drugs (RxNorm, First DataBank, Micromedex)
o medical devices (UMD, SPN)

— Several perspectives
o clinical terms (SNOMED CT)
o information sciences (MeSH, CRISP)
o administrative terminologies (ICD-9-CM, CPT-4)
o data exchange terminologies (HL7, LOINC)
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— Specialized vocabularies
o nursing (NIC, NOC, NANDA, Omaha, PCDS)
dentistry (CDT)
oncology (PDQ)
psychiatry (DSM, APA)
adverse reactions (COSTART, WHO ART)
o primary care (ICPC)
— Terminology of knowledge bases (AI/Rheum, DXplain, QMR)

O O O O

The UMLS serves as a vehicle for the regulatory standards
(HIPAA, CHI)

Integrating subdomains:

= Clinical
Clu}lcafi repositories :
repositories Genetic

\ kno\ﬁ.:g;tewbasﬁ knowledge bases
Other [ sNomED CT | bgﬂlef‘
subdomains OMIM SUBCOIALS
| - i i Biomedical
Biomedical
UMLS e literature literature
NCBI
Taxonomy _
Model =y Model
orgAmizmS s FMAJ organisms

Genome

annotations

Genome
annotations

Anatomy

Trans-namespace integration:

Addison's disease Clinical
(363732003) repositories ' . ﬂ
renelic

knowledge bases

Other

subdomains
» Biomedical
literature
NCBI ) -
~ Taxonomy Addison Disease (D000224)
Model — I GO |
arganisms _}Fﬁe\_ \

/ Genome l

‘ Anatomy [ i S
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Addison’s Disease: Concept

| ADRENAL INSUFFICIENCY (ADDISON'S DISEASE)
| ADRENOCORTICAL INSUFFICIENCY, PRIMARY FAILURE
Disease or Syndrome | Hypoadrenalisms, Primary

2 Melasma addiscnii

| Primary adrenal deficiency

' Asthenia pigmentosa
. Bronzed disease
Insufficiency, adrenal primary
¢ Primary adrenocertical insufficency
| Addison's, disease

. Maladie d'Addison - French

Addison-Krankheit - German ]
. Morbo di Addison - ltalian !
Doenica de Addison - Portuguese i
| ANWMCOHOBA BONE3Hb - Russian ,

Addison’s Disease

- L s | FU % - Japanese
SNOMED C1 ;
SNOMED Intl An adrenal di h ized by the progressive destruction
; of the adrenal cortex, resulting in msufficient production of
MeSH 1dost and hyd 1 . Climcal mclude
MedDRA C0o001403 anorexia; nausea; weight loss, muscle ewakness: and
hyperpigmentation of the skin due 1o ncrease in eweulanng
e levels of ACTH pracursor hormone which stimulates

melanocytes.

Semantic Types Anatomical
Structure

Disease or

Fully Formed s :
Amnatomical Embryonic

Structure Structure
..|Body Part, Organ or

Organ Component

Pharmacologic
Substance

Population Semantic
Group Network

Metathesaurus

Saccular

Viseus

Concepts

VI1.G.4 How to use the UMLS? A UMLS-based algorithm

Indexing initiative:
@ For noun phrases extracted from medical texts,
map to UMLS concepts
# Then, sclect from the MeSH vocabulary the

concepts that are the most closely related to the
original concepts

MeSH descriptor

Medical text

UMLS
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Restrict to MeSH:

# Based on the principle of semantic locality

4 Use different components of the UMLS

¢ 4 techniques of increasing aggressiveness

e Use Synonymy MRCONSO
o Use Associated expressions (ATXs) MRATX + MRREL
e Explore the Ancestors MRREL + SN

e Explore the Other related concepts ~ MRREL + SN

Synonymy
— Term mapped to Source concept
— For this concept, is there a synonym term that comes from MeSH? (MRCONSO)

Associated expressions
— If not,
— Is there an associated expression (ATX) that describes this concept using a combination of
— MeSH descriptors? (MRATX/MRMAP + MRREL)

Endoscopic removal of @
intraluminal foreign body <:> @
from oesophagus without

incision

Esophagus surgery Foreign Bodies

Ancestors
— If not, let us build the graph of the ancestors of this concept
o using parents and broader concepts (MRREL)
o all the way to the top
o excluding ancestors whose semantic types are not compatible with those of the source concept
(MRSTY)
— From the graph, select the concepts that come from MeSH (MRCONSO)

— Remove those that are ancestors of another concept coming from MeSH

Other related concepts

— If not, explore the other related concepts (MRREL) whose semantic types are compatible with those
of the source concept (MRSTY)

— From those, select the concepts that come from MeSH (MRCONSO)

Example

Vein of neck, NOS

on of MeSH terms (ATX) ‘

e

SC is described by a comb

E*--—---I The ancestors of SC contain MeSH terms |—

*‘ MeSH terms from non-hierarchically related concepts ‘—

Vein| + | Neck
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! ! / !

‘ Head and ;eck, NOS ‘ ‘ Body pairt. NOS ‘ l Blood Vessels ‘ ‘ Vasculargstrucmre ‘

.

B
(veins ) E

D Systemic veins

‘ Vein of head and neck, NOS

‘ Vein of neck, NOS |

Quantitative results

¢ 86% of UMLS concepts mapped to MeSH (2007)

Other related concepts
Synonymy

Graph of
ancestors

Built-in
mappings

Qualitative results

Qualitative evaluation
o 1,036 concepts extracted from 200 MEDLINE citations
o manual review of every mapping or failure

61% Relevant
o Subtotal Gastrectomy — Gastrectomy

o Encephalopathy, NOS — Brain Diseases
28% More or less relevant

o Vitamin A measurement — Laboratory Procedure
o Swelling, NOS — Symptoms
— 11% Non relevant

References: UMLS documentation
— UMLS home page http:// www.nlm.nih.gov/research/umls/
— UMLS documentation

o Formerly know as the “Green Book”

o Now online documentation
o http://www.nlm.nih.gov/research/umls/UMLSDOC.HTML
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VII. BIOMOLECULAR DATABANKS

VII.A Introduction

VII.A.1 Genomic data

What are genomic data?

— Al the information (structural and functional) that we have at molecular level on living organisms
— Mainly obtained by means of molecular biology experiments

VII.A.2 Biomolecular data production

Today many public and private research groups are working in sequencing and analysing the gemomes of
many organisms

New automatic sequencing and high-throughput analysis techniques (e.g., microarrays) produce huge
amount of data. Automatic annotations enable to have homogeneous genomic data on which subsequently
applying consistent analysis strategies, obtaining comparable results

Nucleotide sequences Protein structures Bibliographic

BN AIMEOMS
nmASEnE SN
N M v s R

1970 1985 2000 2015 1970 1985 2000 2015 1970 1985 2000 2015

Protein sequences Mapped human geane Genetic bibliography

WM 3nE0ma
WS Mo
wl—n —rrsW

1970 1985 2000 2015 1970 1985 2000 2015 1870 1985 2000 2015

Different slopes: it can be that part of the information that is available is not of good quality, and does not
make it through the literature. On the other hand, just by analysing measures already produced, we can
extract many new information.

VII.A.3 Biomolecular data types
Genetic sequences, from raw trace files to base-calls, to protein
Microarrays (gene expression, SNP, ...), from pictures to interpretation
Sample annotations

Patient diagnostics:
— Karyotype
— Fluorescent In Situ Hybridization

— Polymorphisms

o (Genetic sequences

Though the trace files are large, the readings take up much less space

— FASTA: simple text file format consisting of a header line beginning with a greater than (>) symbol
followed by a sequence of one letter base or amino acid codes

— Lowest common denominator between proprietary systems
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— The entire genome can be downloaded in FASTA format

>TC30326 51 TC63997 TC16407 TC21735 TC23192 TC30327 TCH0687 TC59470
GAGCCTCTGGGTCCCGTCTAGGTACACTTTCTGCATTTCGAGCCCGGGCAGGTGAGGTGCGACAGGTAAATTTAAC
ACAATGGATTTCTCCAAGCTACCCAAAATCCGAGATGAGGATAAAGAAAGTACATTTGGTTATGTGCATGGAGTCTC
AGGGCCTGTGGTTACAGCCTGTGACATGGCGGGCGCTGCCATGTACGAGCTGGTGAGAGTGGGGCACAGCGAGC
TGGTTGGAGAAATTATTCGATTGGAAGGTGACATGGCCACCATTCAGGTGTATGAAGAAACTTCTGGTGTCTCTGTT
GGAGACCCCGTACTCCGCACTGGTAAACCTCTCTCGGTCGAGCTGGGTCCCGGGATTATGGGAGCCATTTTTGATG
GTATACAGAGACCTCTGTCGGATATCAGCAGTCAGACCCAAAGTATCTACATCCCCAGAGGAGTCAATGTGTCTGCT
CTCAGCAGAGATATCAAATGGGAGTTTATACCCAGCAAAAACCTACGGGTTGGTAGTCATATCACTGGTGGAGACAT
TTATGGGATTGTCAATGAGAACTCCCTCATCAAACACAAAATCATGTTGCCCCCACGTAACAGAGGAAGCGTGACTT
ACATCGCGCCGCCTGGGAATTATGATGCATCCGATGTCGTCCTGGAGCTTGAGTTTGAAGGTGTGAAGGAGAAGTT
CAGCATGGTCCAAGTGTGGCCTGTGCGGCAGGT

e Microarrays
Raw TIFF images from a single microarray take 10-100 MB

File of expression measurements is 0.5-1 MB

Each experiment of differential gene expression is made of 2-3 replica of test and control microarrays: 4-6
microarrays

MIAME: Minimum Information About Microarray Experiment http://www.mged.org/Workgroups/MIAME /miame.html

MGED: Microarray Gene Expression Database http://www.mged.org/

ae s -
. :o:.l"-!I-:“lﬁ’.

e Sample annotations

How to describe the context of the measured sample?

— The least common denominator

— Equivalent to the medical records problem

e Specific biomolecular data types

— Nucleotide sequences

— Genomic mapping data

— Expression profiles (2D-SDS PAGE, DNA chips)
— Protein sequences

— 3D Structures of nucleic acids and proteins

— Transcription and genotyping data

— Metabolic data

— Functional and phenotypic annotations

— Bibliographic information

VII.B Biomolecular databanks

VII.B.1 Growth

Biomolecular data and information are stored in databanks, mostly public and freely accessible through the
Internet

Since 1994, every year Nucleic Acids Research publishes an issue dedicated to molecular biology databanks.
It includes a list of freely available key databanks, with a brief description and the databank URL
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The 2021 update lists 1,641 databanks, with 90 new and 86 eliminated for discontinued URL with respect to
the 2020 edition (https://academic.oup.com/nar/issue/49/D1). This number is very high, and despite that
some databanks contain replica, most of them are specific to different biomolecular domain.

— Corresponding open access paper is: Rigden DJ, Ferndndez XM. The 27th annual Nucleic Acids
Research database issue and Molecular Biology Database Collection. Nucleic Acids Res. 2021; 49(D1):
D1-D9 (https://academic.oup.com/nar/article/49/D1/D1/6059975)

2000

1800 75

1600 s Ren B N BB lls

1400 SO . I I O I O I B

1200 M0 — e ] ]

1000 968 1 | L b e e e e e e e e e

Databank number

800 w— A AR

600 L-7.7: SN S S S I Iy I [ Sy I ) (O

400 335 = MHHMH MM H
281

293 226

200 4 - SN ) [ A S e

0

1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 2021
Publication year

VII.B.2 Interoperability and cross referencing

It is well managed if an institution is responsible for several databanks (e.g., the NCBI below)

Tar@fbmy PapSet
< UriSne chiolBlomes
nuPide Gene Books Genome
@i uiidrs HomolbGene
Pu@ed stilihure oM &DS
NP PMC Jolrnals

. Consémved
@ 30 I@ams Domains

FEntrez databanks
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Ofglnllm-spcciﬂc 2 :_: S
databases Sequence databases Enzyme and pathway Family and demain
AGD EMBEL databases databases
E_I‘”“"Li‘“ PIR BioCyc GenedD
cGD RefSeq | Reactome HAMAF
Creh UniGene i . IrterP re
dictyBase + f PANTHER
EchoBASE N PIRSF
EcoGene Pfam
euHCVdb PRINTS
FlyBaze A ProDiom
GeneCards PROSITE
GeneDB_Spambe f SMART
Genef am ! | TIGRFAMs
Genelyny |
Gramens A
H-InvDB o 2D-gel databases
HGEMC \
‘ 20Bage-Ecali

HPA ANU-2DPAGE
LegraList AsrhusiGhent-2DPAGE
Laproma ' COMPLUYEAST-2DPAGE
Mat UniProtikKB/Swiss-Prot i e
Pl e 2 E
MypuList explicit links HSC-20PAGE
Orphanet AN PHC L 2DPAGE
PharmGKB /' 4 PhibiA-2DPAGE
F'seuqu‘AP P F . Rat-heart-2DFAGE
Photolist REFPRODUCTION-2DPAGE
RGD Siena-20PAGE
poa et g SWISS-2DPAGE

# World- 2DP A
r / | World:2DPAGE
?;?#LFS' " Miscellaneous
Tuberculist ArrayExpress
WormBase BindingDB
WarmPap \ CleanEx
Henbase ! dbSHP
IFIN i
= 4 DrugBank
Genome annotation ¥ . GO
databases ' 3D structure Protein familygroup HOGE NOM
Ensambl ¥ databases databases :-IT;ERBEN
GenomeR eviews [ i DisFrol Germ Online ALt
GenelD PTM databases HSSP MEROPS LinkHub
KEGE GlycoSuiteDB POB PeroxiBase MextBio
NMPDR PhesSite PO gurm PptaseDE PeplideAtiag
TIGR | PheosphoSite SMR REBASE PraMEX
Wectorbase

VII.B.3

Most of biomolecular databanks are public and freely accessible through internet. They can be subdivided in:

— Primary databanks (DNA, RNA, proteins, ...)

— Derivative or specialized databanks (EST, STS, SNP, RNA, genomes, microarray data, protein

families and domains, pathways, genetic disorders, ...)

e Primary

Databanks of nucleic and amino acid sequences are defined as primary databanks because they contain only
generic information. This is the minimal information to be associate with the sequence in order to identify it
from the point of view of specie-function.

Each sequence introduced in a databank with its annotation constitutes an “entry” and is identified by an ID
or accession number

Two main classes:
— DNA (nucleic acids) databanks, including:
o EMBL at EBI (Europe - UK) http://www.ebi.ac.uk/embl.html
o GenBank at NCBI (US) http://www.ncbi.nlm.nih.gov/
o DDBJ (Japan) http://www.ddbj.nig.ac.jp/
— Protein (amino acids) databanks, including:
o UniProt (The Universal Protein Resource) http://www.uniprot.org/
»  Swiss-Prot/TrEMBL (high level of annotation) http://www.expasy.org/sprot/
» PIR (Protein Information Resource) http://pir.georgetown.edu/
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The first databank of nucleic acid sequences, created in 1980, is the Furopean Molecular Biology Laboratory
(EMBL) Data Library (http://www.ebi.ac.uk/embl/) constituted in the homonym laboratory in Heidelberg

in Germany.

In 1982 was created GenBank, the American databank (http://www.ncbi.nlm.nih.gov/Genbank/), with a
data format different from the EMBL and developed in parallel with it

In 1986 was created DDBJ, the DNA Data Bank of Japan (http://www.ddbj.nig.ac.jp/)

The three major primary databanks joined the International Nucleotide Sequence Database
Collaboration that promotes the following projects:

— The Taxonomy Project, one of its main goals is using a unified taxonomy in all three databanks

— The Feature Table, identifying a set of information to associate to each sequence and the mechanism

of data exchange

US A

Europe
NCBI/NLM EBI/EMBL

TAM: International Advisory Meeting - ICM: International Collaborative Meeting
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Number of Entries by Contributors to DDBJ Release
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e Specialized

The specialized databanks collect sets of homogeneous data from the taxonomic and/or functional point
of view. These data, available in the primary databanks and/or in the literature, are revised and annotated

with added value information.

The specialized databanks can be:
—  Human curated (e.g., Entrez Gene, Swiss-Prot, NCBI RefSeq mRNA)
—  Computationally derived (e.g., UniGene)
— A combination of both (e.g., NCBI Genome Assembly)
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Specialized databanks can be classified as:

— A simple subset of the primary databank data, homogeneous from the biological point of view,
accurately revised and enhanced with specific biological information inherent to the considered
subset

o A good example is the PIR Sequence-Structure databank (PIR-NRL3D) (Pattabiraman N. et
al., 1990) PIR-NRL3D is a databank of proteins, derived from the Protein Information
Resource (PIR) databank, with a known 3D structure and whose atomic coordinates are
memorized in the Protein Data Bank (PDB)

— A set of homologous sequences multi-aligned, such as:
o rRNA compilation databank (Neefs JM. et al., 1993) (http://rrna.uia.ac.be/)
o tRNA compilation databank (Steinberg S. et al., 1993)

— A set of specific information, complementary of those in the primary databanks, and specific for a
well-defined class of sequences

o A good example for this class is the Eukaryotic Promoter Databank (EPD) (Cavin Périer R.
et al., 1998) (http://www.epd.isb-sib.ch/)

Genomic databanks, representative of the whole set of information derived from mapping and sequencing
projects of the Human Genome and of other Genomes selected as Model Organisms. A good example are the
Genome Data Base (GDB) (http://gdbwww.gdb.org/), or the Mouse Genome Informatics
(http://www.informatics.jax.org/)

Integrative databanks, created to collect information dispersedly stored in other specialized databanks.
Good examples are:

— GeneCards (http://bioinformatics.weizmann.ac.il/cards/)
— SOURCE (http://source.stanford.edu/)

VII.B.4 Databank main features to be considered

Scientific community acknowledgment
Building procedures, components: curated vs. computationally inferred

Content provided:

— Data:
o Semantic types, organisms
o Annotations
o Cross-references
o Updating frequency

o Statistics
— Query and analysis services: query options and response time

Access (Web, FTP, Web service): data format and dimension

VII.B.5 Selected biomolecular databanks

Primary DBs Protein DBs Disorders DBs
- EMBL-EBI + UniProt + OMIM

« GenBank « Swiss-Prot « GAD

- DDBJ « TrEMBL Mutation DBs
Sequence DBs + PIR « dbSNPs

« UniGene Protein 3D structure DBs  Microarray DBs
» RefSeq - PDB + SMD

- UCSC Protein domain DBs « GEO

» Ensemble + InterPro + Array Express
Genomic DBs Patway DBs Integrative DBs
. GDB + KEGG « SOURCE
Gene DBs + Reactome + GeneCards
« Entrez Gene Gene Ontology Annot. DBs Literature DBs
.- OmoloGene * SQA * PubMed
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EMBL: http://www.ebi.ac.uk/embl/ PDB: http://www.rcsb.org/pdb/

GenBank: http://www.ncbi.nlm.nih.gov/GenBank/ KEGG: http://www.genome.ad.jp/kegg/

DDJB: http://www.ddbj.nig.ac.jp/ Reactome: http://www.reactome.com/

UniGene: http://www.ncbi.nlm.nih.gov/UniGene/ GOA: http://www.ebi.ac.uk/GOA/

RefSeq: http://www.ncbi.nlm.nih.gov/RefSeq/ OMIM: http://www.ncbinlm.nih.gov/Omim/

UCSC: http://genome.ucsc.edu/ GAD: http://geneticassociationdb.nih.gov/

GDB: http://www.gdb.org/ dbSNPs: http://www.ncbi.nlm.nih.gov/snp

Ensemble: http://www.ensembl.org/ SMD: http://genome-wwwb.stanford.edu/Microarray/
Entrez Gene: http://www.ncbi.nih.gov/gene GEO: http://www.ncbi.nlm.nih.gov/geo/
HomoloGene: http://www.ncbi.nlm.nih.gov/HomoloGene/ Array Express: http://www.ebi.ac.uk/arrayexpress/
UniProt: http://www.pir.uniprot.org/ SOURCE: http://source.stanford.edu/

Swiss-Prot: http://www.expasy.ch/sprot/ GeneCards: http://bioinformatics.weizmann.ac.il/cards/
TrEMBL: http://www.ebi.ac.uk/trembl/ Harvester: http://harvester.embl.de/

PIR: http://www-nbrf.georgetown.edu/pirwww /search/ PubMed: http://www.ncbi.nlm.nih.gov/pubmed/

InterPro: http://www.ebi.ac.uk/interpro/

Of each main databank, you should know building procedures (curated vs. computationally inferred) and
content provided (data types, main organisms, updating frequency))

Example IDs (table of conversion is accessible):

GenBank UniGene Entrez Gene ID Swiss-Prot/ UniProt  PIR accession PDB ID
accession number cluster ID accession number / 1D
H58260 Hs.1634 993 Q16719 A41648 1C25
H72122 Hs.104925 8507 P30304 A48157 1AH9
H87471 Hs.169139 8942 P09581 138238 1C04
R43509 Hs. 75251 8554 P30291 153908 2RGF
W96134 Hs.78465 3725 Q14703 JCS5517 3EZA
AAD039640 Hs.75188 7465 095644 510404 4HHB
AAD47413 Hs 55606 7571 P28352 S$12008 STMP
AA158990 Hs.80680 9961 P48307 S51342 7TENL
AA399473 Hs.295944 7980 P48431 S55048 9INS
AA447393 Hs.75890 8720 P05412 T04859 13PK

In the case of proteins (right), it is easier to find the correspondence in the table, because UniProt plays a
reference role and contains other identifiers

VII.C Issues in effective using the provided data

VII.C.1 Scenario and users’ needs

Biomolecular sequence data and annotations describing individual genes and their encoded protein products
continue to accumulate in many different databanks

Gene and protein databanks are accessible in different ways

At present, these ways are mainly not functional to efficiently use comprehensively the provided annotations
for easily studying lists of genes, e.g., produced by means of high-throughput experiments

VII.C.2  Access types

Access through Web interface (HTML):
—  Most common provided access
—  Usually unstructured information
— Heterogeneous Web interfaces
— Information organized per single sequence (gene or protein)
—  Query results on single biomolecular sequence are mainly returned in HTML format
— Requires time to comprehensively query multiple databanks
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Access through Web service:
— Available only for a few databanks
— Usually designed for specific queries regarding a limited number of IDs
— Generally, require informatics skill and service composition/integration, e.g., through systems like
o Taverna (http://www.taverna.org.uk/),
o Galaxy (http://galaxy.psu.edu/),
o SeCo (http://http://www.searchcomputing.deib.polimi.it/)

Access through FTP server:

— Requires having technological and informatics skilled human resources for re-implementing locally the
databank, which become obsolete soon

— Sometime there are no explicit relations among provided data (ASCII flat file format)

Direct access:

Rarely allowed for security issues

Databank schemas are heterogeneous and unknown a priori

—  Query languages differ among databanks

— Lack of a common vocabulary, which limits interoperability
Direct HTTP linking to a databank is generally available, if the databank entry identification code/s
is/are known

— Each link (URL) returns a Web page (usually in HTML format) with all data available in the databank
for the considered entry

— Examples of direct links to databanks are:

o UniGene: http://www.ncbinlm.nih.gov/UniGene/clust.cgi?’ ACC=XXXX with XXXX the GenBank
accession number code for the entry (e.g., M27396)

o PDB: http://www.rcsb.org/pdb/cgi/explore.cgi?pdbld=XXXX with XXXX the four letter identification
code for the entry (e.g., http://www.rcsb.org/pdb/cgi/explore.cgi?pdbld=2cpk)

VII.C.3 Information extraction requirements

Biomedical researchers need to have in aggregated form the genomic and proteomic data they need for
their sets of genes/proteins in order to browse them easily and perform complex queries on them to highlight
relevant information

Despite efforts to integrate gene annotations, relevant gene and protein data are still sparsely stored among
heterogeneous databanks

The increasing amount of information available requires new approaches to integrate, summarize,
visualize, and compare the gene and protein annotations in order to make possible discovering new knowledge

VII.C.4 Interrogation/search difficulties

The effective use of the huge amount of data available in biomolecular databanks presents several difficulties:
— The data are stored in distinct databanks
— The databanks:
o are heterogeneous in schema and contents

o generally can be interrogated only for a single biomolecular sequence (i.e. gene or protein) at
a time are mostly accessible for interrogation via Web only

—  The data retrieved as interrogation/search results are often available, not structured, in HTML format only
VII.C.5 Possible solutions and example tools

For the databanks with access through FTP server, solutions to the interrogation difficulties can be:
— Creating local databases (i.e., mirrors) associated to the original databanks
— Drawbacks: keeping updated, multiple database issues
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For the rare databanks with direct access (and for those locally mirrored):

— Designing and using special query languages to access and query data in multiple databases of
heterogeneous DBMS; definition and use of metadata

— Automatic mapping of queries, to answer the need of performing the same query on several databases

For databanks providing access through a Web interface, solutions to the interrogation difficulties reside
in creating/using tools allowing to:

—  Automatically wrap and extract specific data of interest in HTML pages of different databanks
— Store in aggregated form the extracted data
—  Structure the aggregated data to enable performing subsequent specific queries on them

For access through Web services (the most useful way from the informatics point of view, to get structured
information), solutions regard the development and usage of a graphical environment for Web service
integration, composition, orchestration and workflow design and execution (e.g., similar to Taverna, with
better service result integration support and graphical interface)

At “Politecnico di Milano”, we developed some tools to effectively use available gene and protein annotations:

— MyWEST: My Web Extraction Software Tool, for the automatic extraction of data about several
genes from multiple HTML pages (http://www.bioinformatics.deib.polimi.it/MyWEST/)

— GFINDer: Genome Function INtegrated Discoverer for the statistical functional analysis of different
groups of genes (http://www.bioinformatics.deib.polimi.it/GFINDer/)

— GPDW: Genomic and Proteomic Data Warehouse, with all the automatic procedures for creation and
updating of an integrated data warehouse of many genomic and proteomic annotations
(http://www.bioinformatics.deib.polimi.it/GPKB/). To add a new datatype, just needed to add a
module and specify its relation to the previous modules, way easier than the previous one

— Bio-SeCo: Biomedical Search Computing, in the context of the Search Computing project
(http://http://www.searchcomputing.deib.polimi.it/), focused on building the answers to complex
multi-topic search queries involving ranking composition like “Which genes encode proteins in different
organisms with the highest sequence similarity to a given protein and are co-expressed (e.g. over
expressed) in the same given tissue?” by interacting with and integrating a constellation of available
cooperating search services, using ranking and joining of results as the dominant factors for service
composition. Available at http://www.bioinformatics.deib.polimi.it /bio-seco/seco/

VII.D Data integration

Data Integration in the Life Science: Integration of Real-World Data:

— Several approaches in data integration: — Quality of integrated data:
o Indexed data sources o Field separator used in the data
o Multi- or Federated databases o Missing required field
o Data warehousing o Primary key or data type constraint violation
o Mediator based systems o Naming heterogeneity
o LAV and GAV o Data format differences
o Memory-mapped data o Syntactically or semantically inconsistent data

structures o Data detail level differences
—  Access tools for: o Documentation inconsistency
o Redundancy

o Browsing
Querying
Visualization
Mining o Elementizing (Parsing)
Standardizing
Verifying

Matching
Householding
Documenting

o Contractual obligations
— Steps to data cleaning

O O O

O O O O ©
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VIII. BIO-TERMINOLOGY AND BIO-ONTOLOGY ANALYSIS

VIII.A Enrichment analysis

VIII.A.1 DMotivations

Given a list of genes found relevant (e.g., differentially expressed) in a studied condition, we like to
understand why such genes are relevant (e.g. changed significantly their expression) in that condition (w.r.t.
the reference one)
Towards this aim, we want to:
—  know which are all the known features (of a certain type, e.g., functional) of such genes
— evaluate which of such features, if any, make a gene having them likely belonging to such group of
genes
To do so, we can:
— retrieve all the gene known annotations (direct and unfolded), e.g., from the Gene Ontology
— consider their annotation terms and test which of them, if any, are significantly more/less
annotated to the found genes w.r.t. all the studied genes

Goal: detectsignificant enrichments and/or depletions of annotation terms (e.g., Gene Ontology (GO) terms)
within a target set of genes of interest, with respect to a master set (target-master scenario)

Example: help biological interpretation of microarray gene expression experiment results

— The target (study) set consists of differentially expressed genes

— The master (population) set consists of all genes that can be detected by the
microarray

VIII.A.2 Problem statement

Interpret biologically why those genes have been selected as statistically significantly differentially expressed
in our test condition, with respect to the reference condition

Input:
—  Master set of n, genes (or gene products)
— Target set of ng genes (or gene products)
—  Controlled vocabulary term t,

— Annotation database, where each gene (or gene product) is annotated to zero or more terms from the
controlled vocabulary

In the case that the annotation are expressed through an ontology, we need to consider all the annotation of
those set of genes, not only the direct annotations that are stored in the database, but also the indirect one
that can be derived by ontology unfolding starting from the direct annotation. This is because the database
only store the direct ontological annotations

Terms
€| ¥ o
§ 2|8 5|2z B
s 8| &§| 2|82 ¢
T 2 = o 8.‘5 g
[&] -4 o wn o O =
tn Genea 1 1 0 0 1 0
L | Geneb 1| 1] o 1| 1] o
8 Gene ¢ 11 o 1 1 1
Gene d 1l 1| o 0 1 1
Gene & o] 1| 1 1 1 1
Gene f 0 0 1 1 0 1
Gene g 0 1] 1 1 0 1

Annotation matriz: one row per gene, one column per annotation term considered
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Output:

— Indication of over-representation (enrichment) or underrepresentation (depletion) of term t; in the
target set — p-value (significance level)

No new annotation is generated with the enrichment analysis! [beware during the exam]

For each annotation term ¢,:
— ngp: number of master set genes (or gene products) annotated to term t;

— k: number of target set genes (or gene products) annotated to term ¢,

A = Master set

B = Target set

Ty

T = Set of all genes (gene products) annotated to term t

Just to have an idea (it is not the right testing formula!), ¢ is enriched in B when % > ﬁ
Tllustrative example:
A= Master set
Term t, is not significantly b= gttt T
enriched in the
target set B
-> High p-value
T, = Set of genes annotated to term t,
A= Master set
B = Target set i
Term t, is significantly
enriched in the
target set B
- Low p-value
T, = Set of genes annotated to term t,
VIII.A.3 Enrichment analysis
Hypothesis testing framework (see reference [1] and [2]):
— Define a null hypothesis and the null distribution
— Compute the significance (p-value) of the observed data
— Compare the p-value to the significance level a (e.g., 0.05)
Example: tossing a coin "
— Null hypothesis: the coin is fair ¢ = 0.5 "
—  Null distribution: binomial "
— Observed k = 70 “heads” out of 100 experiments, leading to g "
p < 0.05 (recall: the p-value is equivalent to the area below 5o —
the curve) =00
— Therefore, we reject the null hypothesis 002

o 10 20 30 40 50 &0 0 &0 90 100
k
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In our case, null hypothesis:

— Under the null hypothesis, belonging to the target set B is independent from being annotated
with term ¢ (i.e., having the feature that the term ¢ represents)

— The probability of observing k genes in the target set annotated to the term ¢ is given by the
hypergeometric distribution (see reference [1] and [2]):

() (e )

()

n!

. n
[P(NBQT = k) = s Wlth (l{;) :m

This is the right testing formula!

A = Master set

B = Target set n,

T = Set of genes annotated to term t

Significance value measured on hypergeometric distribution or through the Fisher Ezxact test (two-sided
test, in either case)

— Probability of finding at least k genes annotated to ¢ in the target set B under the null hypothesis:
b= Z P(Ngr = k)

k>npnr

If p > a: accept the null hypothesis — Belonging to the target set B is independent from being annotated
with term ¢ (term ¢ not significantly enriched)

If p < a: reject the null hypothesis — Belonging to the target set B is dependent from being annotated with
term t (term ¢ significantly enriched), that is belonging to the target set B highlights characteristics
represented by the term ¢

VIII.A.4 Fisher Exact test
Fisher Exact test is a test of significance used in place of x? test in 2 x 2 tables, especially with small samples

Gives the probability P of a contingency table with proportion of cases on the diagonal with most cases
due chance of sampling

Cases / Class

Row

Class 1 Class 0 totals

Cases/ Group 1 C(1.1) C(1.0) C(1.%)

Group Group 0 C(0,1) C(0,0) C(0,")
Column totals c(*,1) C(*,0) Tot

C(1,%)! x C(0,%)! x C(*,1)! x C(x,0)!
C(1,1)! x C(1,0)! x C(0,1)! x C(0,0)! x Tot

Generally used in one tailed tests, but also as a two tailed tests

P =
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In our application case:

Genes / Set
Not target set  totals

Bioinformatics and Computational Biology

Row

Genes / Annotated nr
Term / Not annotated ny=ng-ny+k BEs=9e
Column totals n,-nNg Ny
nr\(na — Nt
PN, k) (O %) ngl (np — ng)lng! (ny —ng)! .
BT ("A) Eling —k)(ng—k)!(ng —ng—np+k)ny!
np
Example:
- n4 = 1000
- ng =200
- ngp =300
0.07 — A= Master set
o0ef k=70 1 B = Target set "
= 4
ol p-value = 0.21 i
~ Term t, is not enriched
g omsf L d
[ I
E 0.03F 1
0.021 iy
0o1fF 1
) . o T = Set of genes annotated to term t,
CICI 20 40 B0 a0 100 120 140 160 180 200
k
0.07 A = Master set
0.08 k=90 B = Target set n
- p-value = 3.43 107 4
- Term t, is enriched
S o4t =
; 0.03
= —
0.02
0.01 1
T = Set of genes annotated to term t,
0

[+

VIII.A.5 Biological interpretation

Biological interpretation of gene list (belonging to target set)

A " L " L s L .
20 40 80 80 100 120 140 160 180

S

200

— Annotation of genes (gene products) to controlled vocabulary terms means that the annotated genes
(gene products) have the features described by the controlled terms

— Terms statistically significantly enriched in a target set of genes represent the gene (gene product)
features that make those genes (gene products) belonging to the target set

— If the target set has been selected as the genes significantly differentially expressed in a given biological
condition, the significantly enriched terms represent the gene (gene product) features that make those
genes (gene products) differentially expressed in that biological condition; thus, they represent the

significant features in the given biological condition
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VIII.A.6 Multiple testing correction

The threshold « controls the false positive rate, i.e.:
— It sets the probability of discarding the null hypothesis when it is true

— In our context, the p-value is the probability of declaring that the membership of a gene to the target
set significantly depends on the annotation of the gene to the tested term t (i.e., on gene having the
feature described by the term ¢), when such membership is independent

a defines the actual false positive rate only when testing the enrichment (depletion) of one annotation
term at a time

When testing multiple annotation terms simultaneously, as it is usually the case, multiple testing
correction is required to adjust p-values to correct false positives occurrence (see [3]), to not risk to have
much more false positive than what we actually want

Why multiple test correction?

Example:
— Imagine a box with 20 marbles: 19 blue and 1 red
— What are the odds of randomly sampling the red marble by chance? It is 1 out of 20 (i.e., 5% chance)
— Now let’s say that you get to sample a single marble (and put it back into the box) multiple times
(e.g., 20 times)
— You have a much higher chance to sample the red marble (there is a 64% chance in the latter case):
Pra = (1= (1—a)eerr)

Widely adopted multiple testing correction methods:

Bonferroni More false negatives (FN)

Bonferroni-Holm

Westfall-Young

Benjamini-Hochberg (False Discovery Rate)

Nciis More false positives (FP)

All these methods define different ways to correct (adjust) the p-value of the performed tests, in order to
provide a p®¥-value that takes into account the variation of test significance due to the high number of
multiple tests preformed

See IV.B.3.5

VIII.A.7 Ontology-based analysis

All previous methods assume that all the multiple tests performed are independent, i.e., in our case the
tested annotation terms are independent (which holds when considering terms part of a terminology, a
controlled vocabulary)

Yet, if ontological annotations are used, parent-child dependencies between annotation terms exist. Some
methods try to exploit the ontology structure (e.g., the Gene Ontology DAG) to de-correlate ontology terms:

Alexa et al., 2006 (see reference [5]):
— Analyse the ontology terms of the annotations bottom-up (from more specific to more generic terms);
two methods:

o Elim method - For each level of the ontological hierarchy: if a term is found to be significantly
enriched, remove the annotations to its ancestor terms of the genes annotated to it from the
target and master set (i.e., do not consider these genes in the analysis of the other ancestor
terms)

o Weight method - improves the Elim method; instead of eliminating genes, they are assigned a
soft weight (less prone to false negative in the enrichment analysis)
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Grossman et al. (see reference [6]):

— Goal is to avoid inheritance problem: children of enriched terms tend to be also enriched

— The hypergeometric distribution formula is modified by considering the set of genes annotated to a
parent term of term ¢ and its intersection to the target set of genes:

A = Master set

P = Set of genes

annotated to a

parent of
term t

B=Targetset n,

T = Set of genes annotated to term t

[”1 }( n,—n, }
kE \fp o —k
P(Npy =k | Ny p=np.p)= -

[ - J
Mp-p

VIII.A.8 Basic operations, software and tools

Assuming that ontological annotation unfolding has been performed according to the “true path rule”:

1 Count number of genes (or gene products) in the master set that

are annotated at least to one term Ma
Count number of genes (or gene products) in the target set that

2 Ng
are annotated at least to one term

3 Count number of genes (or gene products) in the master set

Ny

annotated to a term t

4 Count number of genes (or gene products) in the target set K

annotated to a term {

5 | Find parents of a term t

Union of lists of genes (or gene products) annotated to a term t
and one of its parents

Intersection of gene (or gene product) lists

Find upper induced graph (use 5)

Enrichment analysis algorithms are provided by several:

—  Standalone tools, including Bioconductor packages (http://www.bioconductor.org/)
—  Web-based platforms, such as:

o DAVID (http://david.abcc.nciferf.gov/)

o GFINDer (http://www.bioinformatics.deib.polimi.it/GFINDer/)

Ontologizer (see reference [6]): provides Eclipse Java project (http://ontologizer.de/) that implements:
— The methods in Alexa et al. and in Grossman et al.
— Other conventional enrichment analysis tests
— Yet, it is applied only to Gene Ontology annotations

VIII.A.9 References

1. Rivals I, Personnaz L, Taing L, Potier MC. Enrichment or depletion of a GO category within a class of genes:
which test? Bioinformatics 2007; 23(4): 401-407.
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VIII.B Functional similarity analysis

VIII.B.1 Motivations

Goal: computing functional similarity between genes (or gene products), based on annotations
describing their functions

Traditional strategies are based on:
—  Sequence similarity (sequence homologs), to determine functional categories (protein domain families)

— Analysis of correlation (co-expression, genes active at the same time) in gene expression, e.g., using
microarray experiments

Issues: most co-functioning genes:
— Neither is sequence-related

— Nor encodes proteins in the same protein family, e.g., proteins with the same domains, or in the same
pathway

— Can be expressed at different time points
Hypothesis: if two genes (or gene products) have similar functional annotation profiles, they should be

functionally related. Therefore, we compute measure of functional similarity based on gene (or gene products)
annotation profiles

Annotation profiles, expressed through:
—  Controlled vocabularies (terminologies)
— Ontologies (e.g., the Gene Ontology, and many others!)
VIII.B.2 Functional similarity based on controlled vocabularies

Controlled vocabulary schemas mandate the uses of predefined, authorized terms that have been
preselected

In their simplest version, there are no semantic links between the terms in the controlled vocabulary

Annotation of genes (or gene products): each gene (or gene product) can be annotated to zero or more terms
from a controlled vocabulary

=
c ‘T @
& 2 ol €% S
@ o £ S o® it
o - _8 o o= .g
T 8 | ¥|8%| s
(&) < o w -9 =
Gene a 1 1 0 0 1
Geneb 1 1 0 1 1
Genec¢ 1 0 0 1 1 1
Gened 1 1 0 0 1 1
Gene e 0 1 1 1 1
Gene f 0 1 1 0 1
Gene g 0 1 1 0 1

Annotation matriz
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Example tool: DAVID (The Database for Annotation, Visualization and Integrated Discovery), see reference
[6]. Annotations from Gene Ontology, UniProt, KEGG, ...

Use Kappa (k) statistical index (http://en.wikipedia.org/wiki/Cohen%27s kappa): a statistic applied on our
contingency tables, to evaluate the agreement between two observers (one on every side of the table)

Genea
1 0 Row total C,,+C 3+2
Op = —=t = . — = 0.83
1 3(C,,) | 1(Coy) | 4(Cy2) *
Geneb A C.,*C,.+C.,*C,. 3e4 4302 o5
ab = - = .
0 | 0(Coy) | 2(Cyp) | 2(Cy0) T. T, o
Column total 3(C.,) | 8(C.0 | (T, 0 - 0, -A,, ) 083-05 -
*® 1-A,, 1-05

This last value computed K, ranges from —1 to 1, with:
— K =1: perfect agreement
— K = 0: agreement by chance
— K < 0: disagreement

Validation of the Kappa index metrics: restricting the analysis to (known) functionally related genes
provides higher Kappa scores (see reference [6])

K € [0.0,0.20] poor, [0.20,0.40] fair, [0.40,0.60] moderate, [0.60,0.80] good, [0.80, 1] very good agreement

Human chemokines

50%

40%

30%

- I‘.ium:m randomization
5% 2

%’ n Human genome
& %l \ ; — -
[&] | | Human protein - protein interactions

0.65
0.70

0.75

oso )y <
085 4 -
0.90

0.95

0.55

S

o w
1 %8

o o o

Kappa scores

We performed function similarity according to the annotation profile pairwise between pairs of genes belonging
to each the category. The distribution of the kappa scores shows many low values, but when we increase the
function similarity of the set of genes we analyse (e.g., the chemokines), the kappa score becomes higher and
somehow relevant

VIII.B.3 Computing similarity based on annotation profile

Typically, with ontological annotations, it is a two-step procedure (more precise evaluation):

— Compute ontological term-to-term similarity

— Compute gene-to-gene (or gene product-to-gene product) similarity based on annotation profile
Additional steps (optional):

— Compute gene (or gene product) similarity based on multiple ontologies

— Compute gene (or gene product) clustering based on functional similarity

Théo Saulus Page 198 of 204 Politecnico di Milano, winter 2021



Prof. Marco Masseroli Bioinformatics and Computational Biology

Step 1 (term-to-term similarity) methods:

— Ontology topology-based methods:
o Compute the distance (within the ontology) between two ontological terms by counting the
number of arches between them within the ontology
o Shortest or average distance is used for multiple paths
o Issue: assume that nodes and arches are uniformly distributed in an ontology (usually not true,
because the distribution of nodes and arches within the ontology depend on the development
of the knowledge in the domain represented by the ontology, and some parts of the ontology
may be very detailed [due to more experiments, etc.] compared to others)
— Information theoretic methods (e.g., Singular Value Decomposition (SVD), see clustering
techniques):
o Less sensitive to arch density variability

Example of a simple ontology:

t; : binding

ty : bacterial
binding

t,: carbohydrate
binding

ts: peptidoglycan
binding

,: po]?rsuf:chzmde
binding

A sub-graph of the GO — Molecular function (See reference [7])

VIII.B.3.1 Computing term-to-term similarity

Common method to compute term-to-term similarity (5 steps):

1. Compute the frequency (probability) of occurrence of a term in a corpus (e.g., all gene annotations to
the ontology terms):

Freq(c) = Z{occur(ciﬂc € Ancestors(c;)}

Freq(c)
Prob(c) = ————
ob(c) maxFreq

2. Compute the information content (IC) of a term (in a corpus):
IC(c) = —log(Prob(c))
The rarer (specific) is the term, the lower is its probability and the higher is its IC
The more common (generic) is the term, the higher is its probability and the lower is its IC
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1, : molecular g)+8
function

t,: carbohydrate
binding

S
ty: pnl?'\uf.'(.'halrldi.' 1
binding

2

t5: peptidoglycan
binding

GO term Protein annotations Freq Prob c
fo 8 16 | 0
Iy 3 8 0.5 |
fs 2 4 0.25 2
Iy | 2 0.125 3
I | | 0.0625 4
Is | 1 0.0625 4

Note that Protein annotations are the direct annotation, Freq is the direct+indirect annotation, and that the
same protein annotations count only once in the Freq

3. Find common ancestors of two terms:

CommonAnc(cy, cy) = Ancestors(c,) N Ancestors(c,)
4. Compute shared information between two terms:

Share(c,,cy) = max{IC(a)|la € CommonAnc(c,,cy)}

i.e., the information content (IC) of the Lowest Common Ancestor (LCA), which is the ancestor term more
distant from the ontology root

Lowest Common Ancestor (LCA):
— Common ancestors of nodes (terms) k and n are nodes a and ¢

— The LCA of nodes k and n is node i, the most distant between node a and 7 from the ontology root

5. Compute similarity metrics between two terms:

Resnik:

SIM gesnir (€1, Co) = Share(cy, ¢y)

Jiang:
dist jo(cy,c9) = 1C(cq) + IC(cy) — 2 x Share(cy, ¢y)

1
Si ,Cy) = —
o (e, cz) dist jo(cy,¢5) + 1
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Lin:

2 x Share(cy, cy)

IC(cy) + IC(cy)

There are many other metrics derived from the above (e.g., multiple shared ancestors can be considered)

Sitmy,, =

VIII.B.3.2 Computing gene-to-gene similarity
Step 2 (gene-to-gene similarity):

Computing gene-to-gene (gene product-to-gene product) similarity (based on the similarity of their annotation
terms):

— Consider two genes (gene products), p and ¢, annotated to N and M terms:
GOy = {GOY,...,GO%}
GO? ={G0Y,...,GOY,}

— Define the term-to-term similarity metrics:

s;; = sim(GOY,GOY),  Vie{l,..,N},Vje{l,..,M}
— Compute similarity metrics between two genes (gene products):
o Lord (max of annotated term similarity scores):
GOscore,,,, (p,q) = max(s,;), Vie{l,..,N},Vie{l,.., M}

o Speer (average of annotated term similarity scores):

1 . .
GOscore,,,(p,q) = N MZSZ-]-, vie{l,..,N},Vje{l,..,M}

o Schliker (max of averages of max of term similarity scores, more complex and precise):
GOscorepy (p, q) = max{rowScore(p, q), columnScore(p, q)}

where rowScore is the average of the row maxima and columnScore is the average of the column maxima of
the scores s between each term annotated to p and each term annotated to ¢

VIII.B.4 Similarity analysis, basic operations
We assume that unfolding of ontological annotations has been performed

1 | Count number of genes (or gene products) annotated to a term t

Given two terms t, and t,, find common ancestors

Given two terms t; and t,, find the lowest common ancestor

Compute/Store/Fetch term-to-term similarity

Find the terms annotated to a given gene (or gene product)
Compute gene (or gene product) similarity

DWW

VIII.B.5 Validating functional similarities metrics

— Using structural information (sequence similarity), see references [1] and [2]
— Using gene expression data (e.g. microarray experiments), see reference [3]
— Assessing the functional consistency of clustering, see references [4], [5] and [6]

All these approaches have the limitations mentioned in VIII.B.1
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e Using structural information (sequence similarity):

Bioinformatics and Computational Biology
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BLAST Sequence Similarity:- In [bit score]

x-axis shows the structural similarity between the sequences of a pair of genes (or gene products)

Evidence of annotation:

6 T T T T T
Traceable Author Statement
Mon-traceable Author Statement =
Not Recorded =
5L + o+ ]
+
+ +
+ +
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BLAST Sequence Similarity:-

In [bit scare]

GO annotations tagged as “traceable author statement” (TAS) are typically more reliable
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e Using gene expression data (microarray experiments):

Biological Process
0.7 T T

0.6

0.5

0.4

0.3

Mean Lin's Similarity

0.2

0.1

0.0000 0.1974 0.3949 0.5923 D.7898 0.9872

Absolute Correlation Values

x-axis shows the correlation coefficient between gene expression data obtained in microarray experiments

e Assessing the semantic functional consistency of clustering

— Similarity measures induce a metric space (not a vector space)
—  Some examples:

o Multi Dimensional Scaling (MDS)

o Hierarchical clustering

o Fuzzy clustering
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VIII.B.6 Compute gene similarity based on multiple ontologies

Merge similarity scores obtained using different ontologies, e.g., GO Biological Process (BP) and GO
Molecular Function (MF) (see reference [8]):

1 [(BPscore(p, q)) 2 N (MFscore(p, q)) 2]

funSim(p,q) = 2 | \max BPscore max MFscore
rfunSim(p,q) = / funSim(p, q)

That is, the square root of average of squares of normalized scores. It is very important to normalize the
scores, because the ontology can have very different structures (in particular in terms of richness of nodes),
and even if the information content methods already take that into account (but not enough)
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VIII.B.7 Gene clustering based on functional similarity

Goal: functional clustering
— Functional annotation-based clustering (see examples before)
—  Co-clustering: Functional annotations + microarray expression data
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VIII.B.8 Conclusion

Most of the literature on semantic similarity between genes (or gene products) is based on the GO. However,
genes (and gene products) can be annotated with ontologies (or controlled vocabularies) other than the GO

Open issues:
—  Fuse information provided by multiple ontologies

— Handle ontologies that have a different structure than the GO (i.e., which are not directed acyclic
graphs)
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